超几何函数

F(a1,a2,,amb1,b2,,bn| z)=k0a1kamkb1kbnkzkk!\displaystyle F\left(\begin{gathered} a_1, a_2, \cdots, a_m \\ b_1, b_2, \cdots, b_n \end{gathered} \middle| \ z\right) = \sum_{k \geqslant 0} \frac{a_1^{\overline{k}} \cdots a_m^{\overline{k}}}{b_1^{\overline{k}} \cdots b_n^{\overline{k}}} \cdot \frac{z^k}{k!}

其中 akk!=(a+k1k)\displaystyle \frac{ a^{\overline{k}} }{ k! } = \binom{a+k-1}{k}

超几何函数的特殊情形

F( z)=k0zkk!=ez\displaystyle F\left(\quad | \ z\right) = \sum_{k \geqslant 0} \frac{z^k}{k!} = \text{e}^z,为了使记号整齐,常常写成 F(11| z)=k0zkk!=ez\displaystyle F\left(\begin{gathered} 1 \\ 1 \end{gathered} \middle| \ z\right) = \sum_{k \geqslant 0} \frac{z^k}{k!} = \text{e}^z

又因为 1k=k!1^{\overline{k}} = k!,所以我们有

F(1,11| z)=k0zk=11z\displaystyle F\left(\begin{gathered} 1, 1 \\ 1 \end{gathered} \middle| \ z\right) = \sum_{k \geqslant 0} {z^k} = \frac{1}{1-z}

另外,根据 k!(a+k1k)=ak\displaystyle k! \binom{a+k-1}{k} = a^{\overline{k}} 可以得到封闭形式

F(a,11| z)=k0akzkk!=k(a+k1k)zk=1(1z)a\displaystyle F\left(\begin{gathered} a, 1 \\ 1 \end{gathered} \middle| \ z\right) = \sum_{k \geqslant 0} a^{\overline{k}} \frac{z^k}{k!} = \sum_{k} \binom{a+k-1}{k}z^k = \frac{1}{(1-z)^{a}}

最后一步是根据上指标反转,如果令 aa, zza \leftarrow -a, \ z \leftarrow -z,可以得到

F(a,11| z)=(1+z)a\displaystyle F\left(\begin{gathered} -a, 1 \\ 1 \end{gathered} \middle| \ -z\right) = (1+z)^a

修正贝塞尔函数

F(1b,1| z)=k0(b1)!(b1+k)!zkk!=Ib1(2z)(b1)!z(b1)/2\displaystyle F\left(\begin{gathered} 1 \\ b, 1 \end{gathered} \middle| \ z\right) = \sum_{k \geqslant 0} \frac{(b-1)!}{(b-1+k)!} \frac{z^k}{k!} = I_{b-1}(2\sqrt{z}) \frac{(b-1)!}{z^{(b-1)/2}}

其中 Ib1\displaystyle I_{b-1} 为阶是 b1b-1 的修正贝塞尔函数,当 b=1b=1 时,有

F(1,11| z)=I0(2z)=k0zkk!\displaystyle F\left(\begin{gathered} 1, 1 \\ 1 \end{gathered} \middle| \ z\right) = I_0(2 \sqrt{z}) = \sum_{k \geqslant 0} \frac{z^k}{k!}

合流超几何函数

m=n=1m = n = 1 时,超几何函数有特殊情形

F(ab| z)=k0akbkzkk!=M(a,b,z)\displaystyle F\left(\begin{gathered} a \\ b \end{gathered} \middle| \ z\right) = \sum_{k \geqslant 0} \frac{a^{\overline{k}}}{b^{\overline{k}}} \frac{z^k}{k!} = M(a, b, z)

高斯超几何级数

F(a,bc| z)=k0akbkckzkk!\displaystyle F\left(\begin{gathered} a, b \\ c \end{gathered} \middle| \ z\right) = \sum_{k \geqslant 0} \frac{a^{\overline{k}} b^{\overline{k}} }{c^{\overline{k}}} \frac{z^k}{k!}

其中一种特殊情况是,ln(1+x)=k=1(1)k1xkk!=k=0(1)kxk+1k+1=xk=0(x)kk+1\displaystyle \ln (1+x) = \sum_{k = 1}^{\infty} (-1)^{k-1} \frac{x^k}{k!} = \sum_{k = 0}^{\infty} (-1)^k \frac{x^{k+1}}{k+1} = x \sum_{k = 0}^{\infty} \frac{(-x)^k}{k+1}
从而有

zF(1,12| z)=zk0k!k!(k+1)!(z)kk!\displaystyle z F\left(\begin{gathered} 1, 1 \\ 2 \end{gathered} \middle| \ -z\right) = z\sum_{k \geqslant 0} \frac{k!k!}{(k+1)!} \frac{(-z)^k}{k!}

=zz22+z33z44+=ln(1+z)\displaystyle \quad \quad = z- \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \cdots = \ln (1+z)

高斯超几何函数具有循环分解形式

F(a,bc| z)=1+a1bcz(1+a+12b+1c+1z(1+a+23b+2c+2z(1+)))\displaystyle F\left(\begin{gathered} a, b \\ c \end{gathered} \middle| \ z\right) = 1 + \frac{a}{1} \frac{b}{c} z\left(1+\frac{a+1}{2} \frac{b+1}{c+1} z \left(1 + \frac{a+2}{3} \frac{b+2}{c+2}z(1+\cdots) \right) \right)

超几何函数的常用结论

(1)\textbf{(1)}
(a)k=0\displaystyle (-a)^{\overline{k}} = 0,当 k>a0k > a \geqslant 0aa 为整数

(2)\textbf{(2)}
Γ\Gamma 函数

z!=0tzetdt,Rz>1\displaystyle z! = \int_{0}^{\infty} t^z e^{-t}dt, \quad \mathcal{R}z > -1

证明如下

s>0s > 0,则有 ddx(exxs)=exxs+sexxs1\displaystyle \frac{\mathrm{d}} { \mathrm{d}x } (e^{-x}x^s) = -e^{-x}x^s + se^{-x}x^{s-1}

两边同时积分
[exxs]ϵl=ϵlexxsdx+sϵlexxs1dx[e^{-x}x^s]_{\epsilon}^{l} = -\displaystyle \int_{\epsilon}^{l} e^{-x}x^s \mathrm{d}x + s\int_{\epsilon}^{l}e^{-x}x^{s-1} \mathrm{d}x

如果记 Γ(s)=0exxs1dx,s>0\displaystyle \Gamma(s) = \int_{0}^{\infty} e^{-x}x^{s-1} \mathrm{d}x, \quad s > 0

l,ϵ0l \to \infty, \epsilon \to 0[exxs]ϵl=0[e^{-x}x^s]_{\epsilon}^{l} = 0,所以有

Γ(s+1)=sΓ(s)\Gamma(s+1) = s\Gamma(s),又因为 Γ(1)=0exdx=ex0=1\Gamma(1) = \int_{0}^{\infty} e^{-x}\mathrm{d}x = -e^{-x} \big|_{0}^{\infty} = 1

由此推出 Γ\Gamma 函数的两个性质

Γ(z+1)=z!\displaystyle\Gamma(z+1) = z!

(z)!Γ(z)=πsinπz\displaystyle (-z)! \Gamma(z) = \frac{\pi}{\sin \pi z}

(3)\textbf{(3)}
广义阶乘幂

zw=z!(zw)!\displaystyle z^{\underline{w}} = \frac{z!}{(z-w)!}

zw=Γ(z+w)Γ(z)\displaystyle z^{\overline{w}} = \frac{\Gamma(z+w)}{\Gamma(z)}

(4)\textbf{(4)}

(x)n=(1)n(x)n\displaystyle (x)^{\overline{n}} = (-1)^n \cdot (-x)^{\underline{n}}

超几何表示

对于超几何函数

F(a1,a2,,amb1,b2,,bn| z)=k0tk,tk=a1kamkb1kbnkzkk!\displaystyle F\left(\begin{gathered} a_1, a_2, \cdots, a_m \\ b_1, b_2, \cdots, b_n \end{gathered} \middle| \ z\right) = \sum_{k \geqslant 0} t_k, \quad t_k = \frac{a_1^{\overline{k}} \cdots a_m^{\overline{k}}}{b_1^{\overline{k}} \cdots b_n^{\overline{k}}} \cdot \frac{z^k}{k!}

其中第一项是 t0=1t_0 = 1,其他项可以从相邻比值中得到

tk+1tk=a1k+1a2k+1amk+1a1ka2kamkb1kb2kbnkb1k+1b2k+1bnk+1\displaystyle \frac{t_{k+1}}{t_k} = \frac{a_1^{\overline{k+1}} a_2^{\overline{k+1}} \cdots a_m^{\overline{k+1}}}{a_1^{\overline{k}} a_2^{\overline{k}} \cdots a_m^{\overline{k}}} \cdot \frac{b_1^{\overline{k}} b_2^{\overline{k}} \cdots b_n^{\overline{k}}}{b_1^{\overline{k+1}} b_2^{\overline{k+1}} \cdots b_n^{\overline{k+1}}}

=(k+a1)(k+a2)(k+am)z(k+b1)(k+b2)(k+bn)(k+1)\displaystyle \quad \quad = \frac{(k+a_1)(k+a_2) \cdots (k+a_m) \cdot z}{(k+b_1) (k+b_2) \cdots (k+b_n) (k+1)}

这是一个有理函数,给定的某个级数,写成超几何级数

k0tk=t0F(a1,a2,,amb1,b2,,bn| z)\displaystyle \sum_{k \geqslant 0}t_k = t_0 \cdot F\left(\begin{gathered} a_1, a_2, \cdots, a_m \\ b_1, b_2, \cdots, b_n \end{gathered} \middle| \ z\right)

这里有几点需要注意

如果 tkt_k 中包含有 (a+k)!(a+k)! 这样的因子,将 (a+k+1)(a+k+1) 写到 tk+1tk\displaystyle \frac{t_{k+1}}{t_k}相应位置
就是说如果 (a+k)!(a+k)! 出现在分母上,就将 (a+k+1)(a+k+1) 写到 tk+1tk\displaystyle \frac{t_{k+1}}{t_k} 的分母上,否则就写到分母上

如果 tkt_{k} 中包含有 (ak)!(a-k)! 这样的因子,将 (ak)(a-k) 写到 tk+1tk\displaystyle \frac{t_{k+1}}{t_k}相反位置
就是说如果 (ak)!(a-k)! 出现在分子上,就将 (ak)(a-k) 相反地写到 tk+1tk\displaystyle \frac{t_{k+1}}{t_k} 的分母上

另外注意 tk+1tk\displaystyle \frac{t_{k+1}}{t_k} 对应的 (ak)(a-k),实际上写成超几何函数的参数是 (1)(ka)(-1) \cdot (k-a),参数为 a-a

分母没有 (k+1)(k+1) 的要补上

几个恒等式的超几何表示

(1)\textbf{(1)}

kn(nkk)zk=11+4z((1+1+4z2)n+1(11+4z2)n+1),n0\displaystyle \sum_{k \leqslant n} \binom{n-k}{k} z^k = \frac{1}{\sqrt{1+4z}}\left( \left(\frac{1+\sqrt{1+4z}}{2}\right)^{n+1} - \left(\frac{1-\sqrt{1+4z}}{2}\right)^{n+1} \right), \quad n \geqslant 0

来观察 kn(nkk)zk=k(n+k2k)\displaystyle \sum_{k \leqslant n} \binom{n-k}{k}z^k = \sum_{k} \binom{n+k}{2k},这里的化归,大致如下

(nkk)=(nk)!k!(n2k)!2k(n2k),k=n2k2\displaystyle \binom{n-k}{k} = \frac{(n - k)!}{k! (n - 2k)!} \Longrightarrow 2k' \leftarrow (n-2k), k = \frac{n-2k'}{2},进一步化简得到

(n/2+k)!(2k)!(n/2k)!\displaystyle \frac{(n/2 + k')!}{(2k')! (n/2-k')!},令 nn/2,kkn \leftarrow n/2, k \leftarrow k'

所以对应成 tk=(n+k2k)t_k = \displaystyle \binom{n+k}{2k}

t0=1t_0 = 1

tk+1tk=(n+k+1)(kn)(k+1)(k+1/2)14\displaystyle \frac{t_{k+1}}{t_k} = \frac{(n+k+1)(k-n)}{(k+1)(k + 1/2)} \cdot \frac{-1}{4},超几何表示为

F(1+n,n1/2| z/4)=F(1+2n/2,n1/2| z/4)\displaystyle F\left(\begin{gathered} 1+n, -n \\ 1/2 \end{gathered} \middle| \ -z/4\right) = F\left(\begin{gathered} 1+2\cdot \lceil n/2 \rceil, -n \\ 1/2 \end{gathered} \middle| \ -z/4\right)

(2)\textbf{(2)}

k=02n(rk)(r2nk)(1)k=(1)n(rn)\displaystyle \sum_{k = 0}^{2n} \binom{r}{k} \binom{r}{2n-k} (-1)^k = (-1)^n \binom{r}{n}

其中 t0=(r2n)=r!(2n)!(r2n)!\displaystyle t_0 = \binom{r}{2n} = \frac{r!}{(2n)! (r-2n)!},这样 F=(1)n(rn)(2n)!(r2n)!r!=(1)n(2n)!n!(r2n)!(rn)!\displaystyle F = (-1)^n \binom{r}{n} \frac{(2n)! (r-2n)!}{r!} = (-1)^n\frac{(2n)!}{n!} \frac{(r-2n)!}{(r-n)!}

展开超几何函数

tk+1tk=(rk)(2nk)(k+1)(r2n+1+k)=F(r,2nr2n+1| 1)\displaystyle \frac{t_{k+1}}{t_k} = \frac{(r-k)(2n-k)}{(k+1)(r-2n+1+k)} = F\left(\begin{gathered} -r, -2n \\ r-2n+1 \end{gathered} \middle| \ -1\right)

r2n+1=cr-2n+1 = c,那么有恒等式

F(1c2n,2nc| 1)=(1)n(2n)!n!(c1)!(c+n1)!,n0\displaystyle F\left(\begin{gathered} 1-c-2n, -2n \\ c \end{gathered} \middle| \ -1\right) = (-1)^n \frac{(2n)!}{n!} \frac{(c-1)!}{(c+n-1)!}, \quad n \geqslant 0

下面证明一个恒等式

(1)n(2n)!n!=limb2n(b/2)!b!=limxnx!(2x)!\displaystyle (-1)^n \frac{(2n)!}{n!} = \lim_{b \to -2n} \frac{(b/2)!}{b!} = \lim_{x \to -n} \frac{x!}{(2x)!}

根据 (z)!Γ(z)=πsinπz(-z)! \Gamma(z) = \displaystyle \frac{\pi}{\sin \pi z}

(nϵ)!(2n2ϵ)!Γ(n+ϵ)Γ(2n+2ϵ)=sin(2n+2ϵ)πsin(n+ϵ)π\displaystyle \frac{(-n-\epsilon)!}{(-2n - 2\epsilon)!} \frac{\Gamma(n+\epsilon)}{\Gamma(2n+2\epsilon)} = \frac{\sin(2n+2\epsilon) \pi}{\sin(n+ \epsilon) \pi}

sin(x+y)\sin(x+y) 的展开,limϵ0cos2nπsin2ϵπcosnπsinϵπ=(1)n(2+O(ϵ))\displaystyle \lim_{\epsilon \to 0} \frac{\cos 2n\pi \sin 2\epsilon \pi}{\cos n \pi \sin \epsilon \pi} = (-1)^n(2 + O(\epsilon))

最后一步用了洛必达法则,分子分母同时对 dϵ\displaystyle \mathrm{d}\epsilon 求导,得到 2ππcos2ϵπcosϵπ=2\displaystyle \frac{2 \pi}{\pi} \frac{\cos 2\epsilon \pi}{\cos \epsilon \pi} = 2

从而我们有

(nϵ)!(2n2ϵ)!=2(1)nΓ(2n)Γ(n)=2(1)n(2n1)!(n1)!=(1)n(2n)!n!\displaystyle \frac{(-n-\epsilon)!}{(-2n - 2\epsilon)!} = 2(-1)^n \cdot \frac{\Gamma(2n)}{\Gamma(n)} = 2(-1)^n \frac{(2n-1)!}{(n-1)!} = (-1)^n \frac{(2n)!}{n!}

由此,如果令 b=2nb = -2n,代入 (2)\textbf{(2)} 的超几何恒等式中

右边是 (1)b/2(b)!(b/2)!(c1)!(c1b/2)!=(b/2)!b!(c1)b/2\displaystyle (-1)^{b/2} \frac{(-b)!}{(-b/2)!} \frac{(c-1)!}{(c-1-b/2)!} = \frac{(b/2)!}{b!} \cdot (c-1)^{\underline{b/2}}

由此可以得到库默尔公式

F(a,b1+ba| 1)=(b/2)!b!(ba)b/2\displaystyle F\left(\begin{gathered} a, b \\ 1+b-a \end{gathered} \middle| \ -1\right) = \frac{(b/2)!}{b!} (b-a)^{\underline{b/2}}

(3)\textbf{(3)}

范德蒙卷积的超几何表示

k(rk)(snk)=(r+sn)\displaystyle \sum_k \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n}

其中 t0=(sn)t_0 = \displaystyle \binom{s}{n},可以推出

F(r,nsn+1| 1)=(r+sn)/(sn)=(r+s)!(s)!(sn)!(sn+r)!\displaystyle F\left(\begin{gathered} -r, -n \\ s-n+1 \end{gathered} \middle| \ 1\right) = \binom{r+s}{n} / \binom{s}{n} = \frac{(r+s)!}{(s)!} \frac{(s-n)!}{(s-n+r)!}

=(s+1)r(sn+1)r=Γ(s+1+r)Γ(s+1)Γ(sn+1)Γ(sn+1+r)\displaystyle \quad \quad = \frac{(s+1)^{\overline{r}}}{(s-n+1)^{\overline{r}}} = \frac{\Gamma(s+1+r)}{\Gamma(s+1)} \cdot \frac{\Gamma(s-n+1)}{\Gamma(s-n+1+r)}

a=r, b=na = -r, \ b = -n,那么上式可以写成

F(a,bc| 1)=Γ(cab)Γ(c)Γ(ca)Γ(cb),b0,RcRa+Rb\displaystyle F\left(\begin{gathered} a, b \\ c \end{gathered} \middle| \ 1\right) = \frac{\Gamma(c-a-b)\Gamma(c)}{\Gamma(c-a) \Gamma(c-b)}, \quad b \leqslant 0, \quad \mathcal{R}c \geqslant \mathcal{R}a + \mathcal{R}b

b=nb = -n 时,可以用阶乘幂表示

F(a,nc| 1)=(ca)ncn=(ac)n(c)n,n0\displaystyle F\left(\begin{gathered} a, -n \\ c \end{gathered} \middle| \ 1\right) = \frac{(c-a)^{\overline{n}}}{c^{\overline{n}}} = \frac{(a-c)^{\underline{n}}}{(-c)^{\underline{n}}}, \quad n \geqslant 0

(4)\textbf{(4)}

k(a+ba+k)(b+cb+k)(c+ac+k)(1)k=(a+b+c)!a!b!c!,a,b,c0\displaystyle \sum_k \binom{a+b}{a+k} \binom{b+c}{b+k} \binom{c+a}{c+k}(-1)^k = \frac{(a+b+c)!}{a!b!c!}, \quad a, b, c \geqslant 0

针对这个式子进行超几何表示,会比较麻烦

F=(a+b+c)!a!b!c!/t0=(a!b!c!)(a+b+c)!(a+b)!(b+c)!(a+c)!\displaystyle F = \frac{(a+b+c)!}{a!b!c!} / t_0 = \frac{(a!b!c!) \cdot (a+b+c)!}{(a+b)!(b+c)!(a+c)!}

tk+1tk=(ka)(kb)(kc)(k+a+1)(k+b+1)(k+c+1)\displaystyle \frac{t_{k+1}}{t_k} = \frac{(k-a)(k-b)(k-c)}{(k+a+1)(k+b+1)(k+c+1)}

k=c+kk' = c+k,即式子中出现的 kkkck-c 代换

F(ca,cb,2cac+1,bc+1| 1)\displaystyle F\left(\begin{gathered} -c-a, -c-b, -2c \\ a-c+1, b-c+1 \end{gathered} \middle| \ 1\right)

再做一替换,令 c=n,an+1=a,bn+1=b\displaystyle c=n, \quad a-n+1 = a', \quad b-n+1 = b',超几何表示为

F(12na,12nb,2na,b| 1)\displaystyle F\left(\begin{gathered} 1-2n-a, 1-2n-b, -2n \\ a, b \end{gathered} \middle| \ 1\right),这里的 a,ba, b 实际上是 a,ba', b'

那超几何恒等式右边等于多少呢?

(a+b+1)cc!(c+a)!a!(c+b)!b!=(a+b+2n1)nn!(a+1)n(b+1)n\displaystyle (a+b+1)^{\overline{c}} \cdot \frac{c!}{\frac{(c+a)!}{a!} \frac{(c+b)!}{b!}} = (a'+b'+2n-1)^{\overline{n}} \frac{n!}{(a+1)^{\overline{n}} \cdot (b+1)^{\overline{n}}}

=(a+b+2n1)nn!(a+n)n(b+n)n\displaystyle \quad \quad = (a'+b'+2n-1)^{\overline{n}} \frac{n!}{(a'+n)^{\overline{n}} \cdot (b'+n)^{\overline{n}}}

还可以进一步化简
n!(a+n)n(b+n)n=n!(12na)(an)(12nb)(bn)\displaystyle \frac{n!}{(a'+n)^{\overline{n}} \cdot (b'+n)^{\overline{n}}} = \frac{n!}{(1-2n-a')\cdots(-a'-n) \cdot (1-2n-b')\cdots (-b'-n)}

注意到 (12na)(an)=(12na)n(1-2n-a')\cdots (-a'-n) = (1-2n-a')^{\overline{n}}(12na)(1-2n-a') 又恰好是超几何函数的上参数

上式 =n!(2n)n(12na)n(12nb)n(2n)n\displaystyle = \frac{n! (-2n)^{\overline{n}} }{ (1-2n-a')^{\overline{n}} (1-2n-b')^{\overline{n}} (-2n)^{\overline{n}} }

注意到 n!(2n)n=(1)n(2n)nn!=(1)n(2n)!n!(-2n)^{\overline{n}} = (-1)^n (2n)^{\underline{n}} n! = (-1)^n (2n)!

上式的分母可以写成 tnn!anbnt_n \cdot n! \cdot a^{\overline{n}} b^{\overline{n}}

由此 F=(1)n(2n)!n!(a+b+2n1)ntnanbn\displaystyle F = (-1)^n \frac{(2n)!}{n!} \frac{(a+b+2n-1)^{\overline{n}}}{ t_n \cdot a^{\overline{n}} b^{\overline{n}}}

上式还不够完美,因为分子中有一个 tnt_n,如果 tn=1t_n = 1 是不是就完美了呢?

实际上,我们可以从 k=nk = n 开始求级数,即 [k=<n,n+1,>]\displaystyle \sum [k = \left< n, n+1, \cdots \right>]
也就是说,对超几何级数 k=k+n,knk' = k+n, k' \geqslant n

此时有 tn=1t_n = 1,并且

F=(a+b+c)!a!b!c!/tn=(1)n(2n)!n!(a+b+1)n1(an+1)n(bn+1)n\displaystyle F = \frac{(a+b+c)!}{a!b!c!} / t_n = (-1)^n \frac{(2n)!}{n!} (a+b+1)^{\overline{n}} \frac{1}{ (a-n+1)^{\overline{n}} \cdot (b-n+1)^{\overline{n}} }

作代换 an+1=a,bn+1=ba-n+1 = a', \quad b-n+1 = b',即可得超几何恒等式

F(12na,12nb,2na,b| 1)=(1)n(2n)!n!(a+b+2n1)nanbn,n0\displaystyle F\left(\begin{gathered} 1-2n-a, 1-2n-b, -2n \\ a, b \end{gathered} \middle| \ 1\right) = (-1)^n \frac{(2n)!}{n!} \frac{(a+b+2n-1)^{\overline{n}}}{a^{\overline{n}} b^{\overline{n}}}, \quad n \geqslant 0

推广到复数,就是迪克逊公式

F(a,b,c1+ca,1+cb| 1)=(c/2)!c!(ca)c/2(cb)c/2(cab)c/2,Ra+Rb<1+Rc/2\displaystyle F\left(\begin{gathered} a, b, c \\ 1+c-a, 1+c-b \end{gathered} \middle| \ 1\right) = \frac{(c/2)!}{c!} \frac{(c-a)^{\underline{c/2}} (c-b)^{\underline{c/2}} }{ (c-a-b)^{\underline{c/2}} }, \quad \mathcal{R}a + \mathcal{R}b < 1+ \mathcal{R}c/2

(5)\textbf{(5)}

k(mr+sk)(n+rsnk)(r+km+n)=(rm)(sn)\displaystyle \sum_k \binom{m-r+s}{k} \binom{n+r-s}{n-k} \binom{r+k}{m+n} = \binom{r}{m} \binom{s}{n}

写成超几何形式,不难发现

t0=(n+rsn)(rm+n)\displaystyle t_0 = \binom{n+r-s}{n} \binom{r}{m+n},超几何恒等式的右边为

(rm)(rm+n)(sn)(n+rsn)=(m+1)n(rm)n(bc)ncn\displaystyle \frac{\binom{r}{m}}{\binom{r}{m+n}} \frac{\binom{s}{n}}{\binom{n+r-s}{n}} = \frac{(m+1)^{\overline{n}}}{(r-m)^{\underline{n}}} \cdot \frac{(b-c)^{\underline{n}}}{c^{\overline{n}}}

超几何表示为

F(rsm,r+1,nrs+1,rmn+1| 1)\displaystyle F\left(\begin{gathered} r-s-m, r+1, -n \\ r-s+1, r-m-n+1 \end{gathered} \middle| \ 1\right)

a=rsm,b=r+1,c=rs+1a = r-s-m, b = r+1, c=r-s+1,可以推出 Saalschütz 恒等式

F(a,b,nc,a+bcn+1| 1)=(ca)n(c)n(cb)n(cab)n\displaystyle F\left(\begin{gathered} a, b, -n \\ c, a+b-c-n+1 \end{gathered} \middle| \ 1\right) = \frac{(c-a)^{\overline{n}}}{(c)^{\overline{n}}} \cdot \frac{(c-b)^{\overline{n}}}{(c-a-b)^{\overline{n}}}

=(ac)n(bc)n(c)n(a+bc)n,n0\displaystyle \quad = \frac{ (a-c)^{\underline{n}} (b-c)^{\underline{n}} }{ (-c)^{\underline{n}} (a+b-c)^{\underline{n}} }, \quad n \geqslant 0

假设上参数为 aka_k,下参数为 bkb_k,恒等式给出,超几何函数满足 b1+b2=a1+a2+a3+1b_1 + b_2 = a_1 + a_2 + a_3 + 1 时的封闭形式

推广
(a1b1)F(a1,a2,,amb1+1,b2,bn| z)=a1F(a1+1,a2,,amb1+1,b2,,bn| z)b1F(a1,a2,,amb1,b2,,bn| z)\displaystyle (a_1-b_1)F\left(\begin{gathered} a_1, a_2, \cdots, a_m \\ b_1+1, b_2, \cdots b_n \end{gathered} \middle| \ z\right) = a_1F\left(\begin{gathered} a_1+1, a_2, \cdots, a_m \\ b_1+1, b_2, \cdots, b_n \end{gathered} \middle| \ z\right) - b_1F\left(\begin{gathered} a_1, a_2, \cdots, a_m \\ b_1, b_2, \cdots, b_n \end{gathered} \middle| \ z\right)

实际上,等价于证明,对于第 kk 项而言,我们有

(ab)ak(b+1)k=a(a+1)k(b+1)kbakbk\displaystyle (a-b) \frac{a^{\overline{k}}}{(b+1)^{\overline{k}}} = a \frac{(a+1)^{\overline{k}}}{(b+1)^{\overline{k}}} - b\frac{a^{\overline{k}}}{b^{\overline{k}}}

这个不等式很好证明,右边通分即可,分母为 bk(b+1)k\displaystyle b^{\overline{k}}(b+1)^{\overline{k}},分子为 bk(ak(a+k)ak(b+k))\displaystyle b^{\overline{k}} \cdot \left(a^{\overline{k}}(a+k) - a^{\overline{k}}(b+k) \right)
化简完就等于左边