1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
| const int inf = 0x3f3f3f3f; const int maxn = 1000 + 10; const int maxN = 4000000; int cost[maxn][maxn][3]; int n, m;
// == Graph definition == vector<int> G[maxN]; class Edge { public: int to, weight; Edge() {} Edge(int to, int w) : to(to), weight(w) {} };
class Node { public: int u, dist; Node() {} Node(int u, int d) : u(u), dist(d) {} bool operator< (const Node& rhs) const { return dist > rhs.dist; } }; vector<Edge> edges;
void initG() { _for(i, 0, maxN) G[i].clear(); edges.clear(); }
void addEdge(int u, int v, int w) { edges.push_back(Edge(v, w)); G[u].push_back(edges.size() - 1); } // == Graph finished ==
// == dijkstra == int D[maxN], vis[maxN];
void initDij(int st) { Set(D, inf); D[st] = 0;
Set(vis, 0); }
void dijkstra(int st) { initDij(st); priority_queue<Node> que; que.push(Node(st, 0));
while (!que.empty()) { int x = que.top().u; que.pop(); if(vis[x]) continue; vis[x] = 1;
_for(i, 0, G[x].size()) { const Edge& e = edges[G[x][i]]; int y = e.to; if(D[y] > D[x] + e.weight) { D[y] = D[x] + e.weight; que.push(Node(y, D[y])); } } } } // == dijkstra finsihed ==
inline int ID(int i, int j, int dir) { return i*m+j+1 + dir*n*m; }
inline int read() { int x; scanf("%d", &x); return x; }
// == build graph == void getEdge(int *e1, int *e2, int *e3) { int *edges[3] = {e1, e2, e3}; // edges[i]:= (i, j, dir) _for(i, 0, 3) _for(j, 0, 3) if(i != j) { int u = ID(edges[i][0], edges[i][1], edges[i][2]); int v = ID(edges[j][0], edges[j][1], edges[j][2]); int w = cost[edges[j][0]][edges[j][1]][edges[j][2]];
addEdge(u, v, w); } }
void build() { _for(i, 0, n - 1) _for(j, 0, m - 1) { int top[] = {i, j, 0}; int bottom[] = {i + 1, j, 0}; int left[] = {i, j, 1}; int right[] = {i, j + 1, 1}; int slash[] = {i, j, 2};
getEdge(top, right, slash); getEdge(bottom, left, slash); }
_for(i, 0, n - 1) { int u = ID(i, 0, 1); int w = cost[i][0][1]; addEdge(0, u, w); } _for(i, 0, m - 1) { int u = ID(n - 1, i, 0); int w = cost[n - 1][i][0]; addEdge(0, u, w); } } // == build finsiehd ==
void init() { Set(cost, 0); }
int main() { freopen("input.txt", "r", stdin); int kase = 0; while (scanf("%d%d", &n, &m) == 2 && n) { init(); initG();
// get data _for(i, 0, n) _for(j, 0, m-1) cost[i][j][0] = read(); _for(i, 0, n - 1) _for(j, 0, m) cost[i][j][1] = read(); _for(i, 0, n - 1) _for(j, 0, m - 1) cost[i][j][2] = read();
// build graph build();
// dijkstra dijkstra(0);
// get ans int ans = inf; _for(i, 0, n - 1) ans = min(ans, D[ID(i, m - 1, 1)]); _for(i, 0, m - 1) ans = min(ans, D[ID(0, i, 0)]);
//debug(ans);
printf("Case %d: Minimum = %d\n", ++kase, ans); } }
|