1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
| const int maxn = 100 + 10; const int inf = 0x3f3f3f3f; int n, m, L;
vector<int> W[maxn][maxn]; int used[maxn][maxn][maxn]; int idx[maxn][maxn];
// == Graph definition == vector<int> G[maxn];
class Edge { public: int from, to, weight; Edge() {} Edge(int f, int t, int w) : from(f), to(t), weight(w) {} };
class Node { public: int u, dist; Node() {} Node(int u, int d) : u(u), dist(d) {} bool operator< (const Node& rhs) const { return dist > rhs.dist; } };
vector<Edge> edges;
void initG() { _for(i, 0, maxn) G[i].clear(); edges.clear(); }
void addEdge(int u, int v, int w) { edges.push_back(Edge(u, v, w)); G[u].push_back(edges.size() - 1); idx[u][v] = edges.size() - 1; } // == Graph finished ==
// == Dijkstra == int p[maxn]; int D[maxn], vis[maxn];
void initDij(int st) { Set(p, 0); Set(vis, 0); Set(D, inf); D[st] = 0; }
void dijkstra(int st) { initDij(st); priority_queue<Node> que; que.push(Node(st, 0));
while (!que.empty()) { int x = que.top().u; que.pop(); if(vis[x]) continue; vis[x] = 1;
_for(i, 0, G[x].size()) { const Edge& e = edges[G[x][i]]; int y = e.to;
if(e.weight > 0 && D[y] > D[x] + e.weight) { D[y] = D[x] + e.weight; p[y] = G[x][i]; que.push(Node(y, D[y])); } } } } // == Dijkstra finished ==
// == solver == int C[maxn];
void initCal() { Set(C, 0); }
int cal() { initCal();
int ans = 0; _rep(st, 1, n) { dijkstra(st); _rep(v, 1, n) { if(v != st) { int u = edges[p[v]].from; used[st][u][v] = used[st][v][u] = 1; } C[st] += (D[v] == inf ? L : D[v]); } ans += C[st]; } return ans; }
int del(int u, int v) { Edge& e1 = edges[idx[u][v]]; Edge& e2 = edges[idx[v][u]];;
if(W[u][v].size() == 1) e1.weight = e2.weight = 0; else if(W[u][v].size() > 1) e1.weight = e2.weight = W[u][v][1];
int ans = 0; _rep(st, 1, n) { if(used[st][u][v] == 0) ans += C[st]; else { dijkstra(st); _rep(i, 1, n) ans += (D[i] == inf ? L : D[i]); } }
e1.weight = e2.weight = W[u][v][0]; return ans; } // == solver finsihed ==
void init() { _for(i, 0, maxn) _for(j, 0, maxn) W[i][j].clear(); Set(used, 0); Set(idx, 0); }
int main() { freopen("input.txt", "r", stdin); while (scanf("%d%d%d", &n, &m, &L) == 3) { init(); initG();
// build graph _for(i, 0, m) { int u, v, s; scanf("%d%d%d", &u, &v, &s); W[u][v].push_back(s); W[v][u].push_back(s); } _rep(i, 1, n) _rep(j, i + 1, n) { if(W[i][j].size()) { sort(W[i][j].begin(), W[i][j].end());
addEdge(i, j, W[i][j][0]); addEdge(j, i, W[i][j][0]); } } // build finished
// solve the problem int c1 = cal(); int c2 = -1; _rep(i, 1, n) _rep(j, i + 1, n) if(W[i][j].size()) { c2 = max(c2, del(i, j)); }
printf("%d %d\n", c1, c2); } }
|