这里对分析学基础理论, 极限和无穷级数部分做一个 review \textbf{review} review  
在 knuth \text{knuth} knuth   的具体数学中, 很多理论都是建立在分析学基础上的
 
数列极限的补充问题 
从每一个实数列中都可以选出一个收敛的或者是趋于无穷的子列 
proof \textbf{proof}\quad proof   其中, 收敛很好证明 
无穷性的证明, ∀ k ∈ N , choose  n k ∈ N \forall k \in \mathbb{N}, \text{choose} \ n_k \in \mathbb{N} ∀ k ∈ N , choose   n k  ∈ N  
∣ x n k ∣ > k   and   n k < n k + 1 , x n k |x_{n_k}| > k \ \textbf{and} \ n_k < n_{k+1}, {x_{n_k}} ∣ x n k   ∣ > k   and   n k  < n k + 1  , x n k     构成无穷子列
example1 \textbf{example1} example1 
lim  ‾ k → ∞ ( − 1 ) k k = lim  n → ∞ inf  k ⩾ n ( − 1 ) k k = { ( − 1 ) 2 m + 1 ( 2 m + 1 ) = − 1 n n = 2 m + 1   ( − 1 ) 2 m ⋅ ( − 1 ) 2 m + 1 = − 1 n + 1 n = 2 m } = 0 \mathop{\underline{\lim}}\limits_{k \rightarrow \infty} \frac{(-1)^{k}}{k}=\lim _{n \rightarrow \infty} \inf _{k \geqslant n} \frac{(-1)^{k}}{k}=\left\{\begin{gathered}
\frac{(-1)^{2m +1}}{(2 m+1)}=-\frac{1}{n} \quad n=2 m+1 \\ \ \\
\frac{(-1)^{2 m} \cdot(-1)}{2 m+1}=\frac{-1}{n+1} \quad n=2m
\end{gathered} \right\} =0
 k → ∞ lim   k ( − 1 ) k  = n → ∞ lim  k ⩾ n inf   k ( − 1 ) k  = ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧  ( 2 m + 1 ) ( − 1 ) 2 m + 1  = − n 1  n = 2 m + 1   2 m + 1 ( − 1 ) 2 m ⋅ ( − 1 )  = n + 1 − 1  n = 2 m  ⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎫  = 0 
lim  ‾ k → ∞ ( − 1 ) k k = lim  n → ∞ sup  k ⩾ n ( − 1 ) k k = { ( − 1 ) 2 m 2 m = 1 n n = 2 m   ( − 1 ) 2 m + 2 2 m + 2 = 1 n + 1 n = 2 m + 1 } = 0 \mathop{\overline{\lim}}\limits _{k \rightarrow \infty} \frac{(-1)^{k}}{k}=\lim _{n \rightarrow \infty} \sup _{k \geqslant n} \frac{(-1)^{k}}{k}=\left\{\begin{gathered}
\frac{(-1)^{2m}}{2 m}=\frac{1}{n} & n=2 m \\ \ \\
\frac{(-1)^{2 m+2}}{2 m+2}=\frac{1}{n+1} & n=2 m+1
\end{gathered}\right\} = 0
 k → ∞ lim  k ( − 1 ) k  = n → ∞ lim  k ⩾ n sup  k ( − 1 ) k  = ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧  2 m ( − 1 ) 2 m  = n 1    2 m + 2 ( − 1 ) 2 m + 2  = n + 1 1   n = 2 m n = 2 m + 1  ⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎫  = 0 
下极限证明语言 
∀ ε > 0 , i − ε < i n = inf  k ⩾ n x k ⩽ x k \forall \varepsilon>0, \quad i-\varepsilon<i_n=\inf\limits_{k \geqslant n} x_{k} \leqslant x_{k} ∀ ε > 0 , i − ε < i n  = k ⩾ n inf   x k  ⩽ x k   
因为 ε \varepsilon ε   是任意的, 所以对于 x k {x_k} x k   
任何部分极限都不能小于 i − ε i - \varepsilon i − ε  , 也就是不能小于 i i i 
补充阅读:《不等式的秘密》 
阅读这部分内容, 主要是为了提升数感, 让自己的代数变形能力有进一步的提升
AM-GM不等式 
problem1 \textbf{problem1} problem1  
a , b , c > 0 , a b c = 1 , 证明 a, b, c>0, abc = 1, \text{证明} a , b , c > 0 , a b c = 1 , 证明 
( a + b ) ( b + c ) ( c + a ) ⩾ ( a + 1 ) ( b + 1 ) ( c + 1 ) ⟹ a b ( a + b ) + b c ( b + c ) + c a ( c + a ) ⩾ a + b + c + a b + b c + c a \begin{gathered}
(a+b)(b+c)(c+a) \geqslant (a+1)(b+1)(c+1) \\ 
\Longrightarrow ab(a+b)+bc(b+c)+ca(c+a) \geqslant a+b+c+ab+bc+ca
\end{gathered}
 ( a + b ) ( b + c ) ( c + a ) ⩾ ( a + 1 ) ( b + 1 ) ( c + 1 ) ⟹ a b ( a + b ) + b c ( b + c ) + c a ( c + a ) ⩾ a + b + c + a b + b c + c a  
重点在于轮换对称的构造
L H S c y c = { a 2 b + a 2 c b 2 a + b 2 c c 2 a + c 2 b } { a 2 b + a b 2 b 2 c + b c 2 c 2 a + c a 2 } L H S_{c y c}=\left\{\begin{gathered}
a^{2} b+a^{2} c \\
b^{2} a+b^{2} c \\
c^2a+c^{2} b
\end{gathered}\right\} \quad \left\{\begin{gathered}
a^{2} b+a b^{2} \\
b^{2} c+b c^{2} \\
c^{2} a+c a^{2}
\end{gathered}\right\}
 L H S c y c  = ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧  a 2 b + a 2 c b 2 a + b 2 c c 2 a + c 2 b  ⎭ ⎪ ⎪ ⎬ ⎪ ⎪ ⎫  ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧  a 2 b + a b 2 b 2 c + b c 2 c 2 a + c a 2  ⎭ ⎪ ⎪ ⎬ ⎪ ⎪ ⎫  
2 L H S + ∑ c y c a b = ∑ c y c ( a 2 b + a 2 b + a 2 c + a 2 c + b c ) ⩾ 5 ∑ c y c a 2 L H S + ∑ c y c a = ∑ c y c ( a 2 b + a 2 b + a b 2 + a b 2 + c ) ⩾ 5 ∑ c y c a b \begin{gathered}
2 L H S+\sum_{c y c} a b=\sum_{c y c}\left(a^{2} b+a^{2} b+a^{2} c+a^{2} c+b c\right) \geqslant 5 \sum_{c y c}a \\
2 L H S+\sum_{c y c} a=\sum_{c y c}\left(a^{2} b+a^{2} b+a b^{2}+a b^{2}+c\right) \geqslant 5 \sum_{c y c} a b
\end{gathered}
 2 L H S + c y c ∑  a b = c y c ∑  ( a 2 b + a 2 b + a 2 c + a 2 c + b c ) ⩾ 5 c y c ∑  a 2 L H S + c y c ∑  a = c y c ∑  ( a 2 b + a 2 b + a b 2 + a b 2 + c ) ⩾ 5 c y c ∑  a b  
综上,  L H S ⩾ ∑ c y c a + ∑ c y c a b \begin{gathered}
\text{综上, }L H S \geqslant \sum_{c y c} a+\sum_{c yc} a b
\end{gathered}
 综上 ,  L H S ⩾ c y c ∑  a + c y c ∑  a b  
problem2   4 n + 3 \textbf{problem2} \ 4n+3 problem2   4 n + 3   是数论中非常常见的数, 因此构造 3 4 \frac{3}{4} 4 3    也是很常见的 
x , y , z > 0 , and   x y z = 1 x,y,z>0, \textbf{and}\ xyz=1 x , y , z > 0 , and   x y z = 1 
x 3 ( 1 + y ) ( 1 + z ) + y 3 ( 1 + z ) ( 1 + x ) + z 3 ( 1 + x ) ( 1 + y ) ≥ 3 4 \frac{x^{3}}{(1+y)(1+z)}+\frac{y^{3}}{(1+z)(1+x)}+\frac{z^{3}}{(1+x)(1+y)} \geq \frac{3}{4}
 ( 1 + y ) ( 1 + z ) x 3  + ( 1 + z ) ( 1 + x ) y 3  + ( 1 + x ) ( 1 + y ) z 3  ≥ 4 3  
x 3 ( 1 + y ) ( 1 + z ) + 1 + y 8 + 1 + z 8 ⩾ 3 4 x , 写成轮换对称 \frac{x^{3}}{(1+y)(1+z)}+\frac{1+y}{8}+\frac{1+z}{8} \geqslant \frac{3}{4} x , \text{写成轮换对称}
 ( 1 + y ) ( 1 + z ) x 3  + 8 1 + y  + 8 1 + z  ⩾ 4 3  x , 写成轮换对称 
∑ c y c x 3 ( 1 + y ) ( 1 + z ) + 1 4 ∑ c y c ( 1 + x ) ⩾ ∑ c y c 3 x 4 ⇒ ∑ c y c x 3 ( 1 + y ) ( 1 + z ) ≥ 1 4 ∑ c y c ( 2 x − 1 ) = 1 4 ( x + x + y + y + … ) − 3 4 ⩾ 6 4 − 3 4 = 3 4 \begin{gathered}
\sum_{c y c} \frac{x^{3}}{(1+y)(1+z)}+\frac{1}{4} \sum_{c y c}(1+x) \geqslant \sum_{c y c} \frac{3 x}{4} \\
\Rightarrow \sum_{c y c} \frac{x^{3}}{(1+y)(1+z)} \geq \frac{1}{4} \sum_{c y c}(2 x-1)=\frac{1}{4}(x+x+y+y+\ldots)-\frac{3}{4} \\
\geqslant \frac{6}{4}-\frac{3}{4}=\frac{3}{4}
\end{gathered}
 c y c ∑  ( 1 + y ) ( 1 + z ) x 3  + 4 1  c y c ∑  ( 1 + x ) ⩾ c y c ∑  4 3 x  ⇒ c y c ∑  ( 1 + y ) ( 1 + z ) x 3  ≥ 4 1  c y c ∑  ( 2 x − 1 ) = 4 1  ( x + x + y + y + … ) − 4 3  ⩾ 4 6  − 4 3  = 4 3   
problem3轮换恒等变形 
\textbf{problem3轮换恒等变形}
 problem3 轮换恒等变形 
( a 2 + b 2 + c 2 ) ( a b + b c + c a ) = a b ( a 2 + b 2 ) + b c ( b 2 + c 2 ) + c a ( a 2 + c 2 ) + a b c ( a + b + c ) if  a , b , c ⩾ 0 , a + b + c = 2 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ⩾ a b ( a 2 + b 2 ) + b c ( b 2 + c 2 ) + c a ( a 2 + c 2 ) ⩾ 2 ( a 2 b 2 + b 2 c 2 + a 2 c 2 ) \begin{gathered}
\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a)=a b\left(a^{2}+b^{2}\right)+b c\left(b^{2}+c^{2}\right)+c a\left(a^{2}+c^{2}\right)+a b c(a+b+c) \\
\text{if} \ a , b, c \geqslant 0, a+b+c =2 \\
\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a) \geqslant a b\left(a^{2}+b^{2}\right)+b c\left(b^{2}+c^{2}\right)+c a\left(a^{2}+c^{2}\right) \\
\geqslant 2\left(a^{2} b^{2}+b^2 c^{2}+a^{2} c^{2}\right)
\end{gathered}
 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) = a b ( a 2 + b 2 ) + b c ( b 2 + c 2 ) + c a ( a 2 + c 2 ) + a b c ( a + b + c ) if   a , b , c ⩾ 0 , a + b + c = 2 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ⩾ a b ( a 2 + b 2 ) + b c ( b 2 + c 2 ) + c a ( a 2 + c 2 ) ⩾ 2 ( a 2 b 2 + b 2 c 2 + a 2 c 2 )  
a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) = ( a + b + c ) 2 = 4 2 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ⩽ ( a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) 2 ) 2 = 4 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ⩽ 2 ⇒ a 2 b 2 + b 2 c 2 + a 2 c 2 ⩽ 1 \begin{gathered}
a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=(a+b+c)^{2}=4 \\
2\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a) \leqslant\left(\frac{a^{2}+b^{2}+c^{2}+2(a b+b c+c a)}{2}\right)^{2}=4 \\
\begin{gathered}
\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a) \leqslant 2 \\
\Rightarrow a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2} \leqslant 1
\end{gathered}
\end{gathered}
 a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) = ( a + b + c ) 2 = 4 2 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ⩽ ( 2 a 2 + b 2 + c 2 + 2 ( a b + b c + c a )  ) 2 = 4 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ⩽ 2 ⇒ a 2 b 2 + b 2 c 2 + a 2 c 2 ⩽ 1   
problem4不等式中的域分组 \textbf{problem4不等式中的域分组} problem4 不等式中的域分组  
a , b , c , d > 0 a,b,c,d>0 a , b , c , d > 0 
1 a 2 + a b + 1 b 2 + b c + 1 c 2 + c d + 1 d 2 + d a ⩾ 4 a c + b d \frac{1}{a^{2}+a b}+\frac{1}{b^{2}+b c}+\frac{1}{c^{2}+c d}+\frac{1}{d^{2}+d a} \geqslant \frac{4}{a c+b d}
 a 2 + a b 1  + b 2 + b c 1  + c 2 + c d 1  + d 2 + d a 1  ⩾ a c + b d 4  
a c + b d a 2 + a b = a 2 + a b + a c + b d a 2 + a b − 1 = a + c a + b + b ( d + a ) a ( a + b ) − 1 L H S = ∑ c y c a + c a + b + ∑ c y c b ( d + a ) a ( a + b ) − 4 \begin{gathered}
\frac{a c+b d}{a^{2}+a b}=\frac{a^{2}+a b+a c+b d}{a^{2}+a b}-1=\frac{a+c}{a+b}+\frac{b(d+a)}{a(a+b)}-1 \\
L H S=\sum_{c y c} \frac{a+c}{a+b}+\sum_{c y c} \frac{b(d+a)}{a(a+b)}-4
\end{gathered}
 a 2 + a b a c + b d  = a 2 + a b a 2 + a b + a c + b d  − 1 = a + b a + c  + a ( a + b ) b ( d + a )  − 1 L H S = c y c ∑  a + b a + c  + c y c ∑  a ( a + b ) b ( d + a )  − 4  
{ a + c a + b , b ( d + a ) a ( a + b ) } , { b + d b + c , c ( a + b ) b ( b + c ) } { c + a c + d , d ( c + b ) c ( c + d ) } , { d + b d + a , a ( d + c ) d ( d + a ) }   用AM-GM不等式消去第二个项, 得到    L H S ⩾ ∑ c y c a + c a + b \begin{gathered}
\left\{\frac{a+c}{a+b}, \frac{b(d+a)}{a(a+b)}\right\}, \quad \left\{\frac{b+d}{b+c}, \frac{c(a+b)}{b(b+c)} \right\} \\
\left\{\frac{c+a}{c+d}, \frac{d(c+b)}{c(c+d)}\right\}, \quad \left\{\frac{d+b}{d+a}, \frac{a(d+c)}{d(d+a)}\right\} \\ \ \\
\text{用AM-GM不等式消去第二个项, 得到 }\\ \ \\
LH S \geqslant \sum_{c y c} \frac{a+c}{a+b}
\end{gathered}
 { a + b a + c  , a ( a + b ) b ( d + a )  } , { b + c b + d  , b ( b + c ) c ( a + b )  } { c + d c + a  , c ( c + d ) d ( c + b )  } , { d + a d + b  , d ( d + a ) a ( d + c )  }   用 AM-GM 不等式消去第二个项 ,  得到     L H S ⩾ c y c ∑  a + b a + c   
∑ c y c a + c a + b = ( a + c ) ( 1 a + b + 1 c + d ) + ( b + d ) ( 1 b + c + 1 d + a ) Schwarz 不等式   1 a + b + 1 c + d ⩾ ( 1 + 1 ) 2 a + b + c + d = 4 a + b + c + d   L H S ⩾ 4 ( a + c ) a + b + c + d + 4 ( b + d ) a + b + c + d = 4 \begin{gathered}
\sum_{c y c} \frac{a+c}{a+b}=(a+c)\left(\frac{1}{a+b}+\frac{1}{c+d}\right)+(b+d)\left(\frac{1}{b+c}+\frac{1}{d+a}\right) \\
\text{Schwarz 不等式} \\ \ \\
\frac{1}{a+b}+\frac{1}{c+d} \geqslant \frac{(1+1)^{2}}{a+b+c+d}=\frac{4}{a+b+c+d} \\ \ \\
L H S \geqslant \frac{4(a+c)}{a+b+c+d}+\frac{4(b+d)}{a+b+c+d}=4
\end{gathered}
 c y c ∑  a + b a + c  = ( a + c ) ( a + b 1  + c + d 1  ) + ( b + d ) ( b + c 1  + d + a 1  ) Schwarz  不等式   a + b 1  + c + d 1  ⩾ a + b + c + d ( 1 + 1 ) 2  = a + b + c + d 4    L H S ⩾ a + b + c + d 4 ( a + c )  + a + b + c + d 4 ( b + d )  = 4  
problem5 \textbf{problem5} problem5  
a , b , c , d , e ⩾ 0 , a + b + c + d + e = 5 , proof a,b,c,d,e \geqslant 0, a+b+c+d+e = 5, \text{proof} a , b , c , d , e ⩾ 0 , a + b + c + d + e = 5 , proof  
a b c + b c d + c d e + d e a + e a b ⩽ 5 abc+bcd+cde+dea+eab \leqslant 5 a b c + b c d + c d e + d e a + e a b ⩽ 5  
proof \textbf{proof} proof 
a b c + b c d + c d e + d e a + e a b = e ( a + c ) ( b + d ) + b c ( a + d − e ) ⩽ e ( a + b + c + d 2 ) 2 + ( b + c + a + d − e 3 ) 3   = e ( 5 − e ) 2 4 + ( 5 − 2 e ) 2 27 \begin{gathered}
a b c+b c d+c d e+d e a+e a b=e(a+c)(b+d)+b c(a+d-e) \\
\leqslant e\left(\frac{a+b+c+d}{2}\right)^{2}+\left(\frac{b+c+a+d-e}{3}\right)^{3} \\ \ \\
=\frac{e(5-e)^{2}}{4}+\frac{(5-2 e)^{2}}{27}
\end{gathered}
 a b c + b c d + c d e + d e a + e a b = e ( a + c ) ( b + d ) + b c ( a + d − e ) ⩽ e ( 2 a + b + c + d  ) 2 + ( 3 b + c + a + d − e  ) 3   = 4 e ( 5 − e ) 2  + 2 7 ( 5 − 2 e ) 2   
f ( x ) = x ( 5 − x ) 2 4 + ( 5 − 2 x ) 2 27 d f ( x ) d x = − 5 36 ( x 2 + 4 x − 5 ) ⇒ x = 1 , d f ( x ) d x = 0   let  e = min  { a , b , c , d , e } , ⇒ e ⩽ 1   f ( x ) ⩽ f ( 1 ) = 2 ⩽ 5 \begin{gathered}
f(x)=\frac{x(5-x)^{2}}{4}+\frac{(5-2 x)^{2}}{27} \\
\frac{d f(x)}{d x}=-\frac{5}{36}\left(x^{2}+4 x-5\right) \Rightarrow x=1, \frac{d f(x)}{d x}=0 \\ \ \\
\text{let } e = \min\{a,b,c,d,e\}, \Rightarrow e \leqslant 1 \\ \ \\
f(x) \leqslant f(1)=2 \leqslant 5
\end{gathered}
 f ( x ) = 4 x ( 5 − x ) 2  + 2 7 ( 5 − 2 x ) 2  d x d f ( x )  = − 3 6 5  ( x 2 + 4 x − 5 ) ⇒ x = 1 , d x d f ( x )  = 0   let  e = min { a , b , c , d , e } , ⇒ e ⩽ 1   f ( x ) ⩽ f ( 1 ) = 2 ⩽ 5  
problem5 \textbf{problem5} problem5  
a , b , c , d > 0 , proof a,b,c,d>0, \text{proof} a , b , c , d > 0 , proof 
( 1 a + 1 b + 1 c + 1 d ) 2 ⩾ 1 a 2 + 4 a 2 + b 2 + 9 a 2 + b 2 + c 2 + 16 a 2 + b 2 + c 2 + d 2 \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)^{2} \geqslant \frac{1}{a^{2}}+\frac{4}{a^{2}+b^{2}}+\frac{9}{a^{2}+b^{2}+c^{2}}+\frac{16}{a^{2}+b^{2}+c^{2}+d^{2}}
 ( a 1  + b 1  + c 1  + d 1  ) 2 ⩾ a 2 1  + a 2 + b 2 4  + a 2 + b 2 + c 2 9  + a 2 + b 2 + c 2 + d 2 1 6  
⇔ 1 b 2 + 1 c 2 + 1 d 2 + ∑ s y m 2 a b ⩾ 4 a 2 + b 2 + 9 a 2 + b 2 + c 2 + 16 a 2 + b 2 + c 2 + d 2 \Leftrightarrow \frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}+\sum_{s y m} \frac{2}{a b} \geqslant \frac{4}{a^{2}+b^{2}}+\frac{9}{a^{2}+b^{2}+c^{2}}+\frac{16}{a^{2}+b^{2}+c^{2}+d^{2}}
 ⇔ b 2 1  + c 2 1  + d 2 1  + s y m ∑  a b 2  ⩾ a 2 + b 2 4  + a 2 + b 2 + c 2 9  + a 2 + b 2 + c 2 + d 2 1 6  
AM-GM不等式, 有   2 a b ⩾ 4 a 2 + b 2   2 a c + 2 b c ⩾ ( 2 2 ) 2 a c + b c ⩾ 8 a 2 + b 2 2 + c 2 > 8 a 2 + b 2 + c 2  (Cauchy-Schwarz)   1 b 2 + 1 c 2 ⩾ 4 b 2 + c 2 ⩾ 1 b 2 + c 2 + a 2   d = min  { a , b , c , d }   2 a d + 2 b d + 2 c d ⩾ ( 3 2 ) 2 a d + b d + c d   ⩾ 18 a d + b d + c d + d 2 ⩾ 18 a 2 + b 2 + c 2 + d 2 > 16 a 2 + b 2 + c 2 + d 2 \begin{gathered}
\text{AM-GM不等式, 有} \\ \ \\
\frac{2}{a b} \geqslant \frac{4}{a^{2}+b^{2}} \\ \ \\
\frac{2}{a c}+\frac{2}{b c} \geqslant \frac{(2 \sqrt{2})^{2}}{a c+b c} \geqslant \frac{8}{\frac{a^{2}+b^{2}}{2}+c^{2}}>\frac{8}{a^{2}+b^{2}+c^{2}} \ \text{(Cauchy-Schwarz)}\\ \ \\
\frac{1}{b^{2}}+\frac{1}{c^{2}} \geqslant \frac{4}{b^{2}+c^{2}} \geqslant \frac{1}{b^{2}+c^{2}+a^{2}} \\ \ \\
d=\min \{a, b, c, d\} \\ \ \\
\frac{2}{a d}+\frac{2}{b d}+\frac{2}{c d} \geqslant \frac{(3 \sqrt{2})^{2}}{a d+b d+c d} \\ \ \\
\geqslant \frac{18}{a d+b d+c d+d^{2}} \geqslant \frac{18}{a^{2}+b^{2}+c^{2}+d^{2}}>\frac{16}{a^{2}+b^{2}+c^{2}+d^{2}}
\end{gathered}
 AM-GM 不等式 ,  有   a b 2  ⩾ a 2 + b 2 4    a c 2  + b c 2  ⩾ a c + b c ( 2 2  ) 2  ⩾ 2 a 2 + b 2  + c 2 8  > a 2 + b 2 + c 2 8    (Cauchy-Schwarz)   b 2 1  + c 2 1  ⩾ b 2 + c 2 4  ⩾ b 2 + c 2 + a 2 1    d = min { a , b , c , d }   a d 2  + b d 2  + c d 2  ⩾ a d + b d + c d ( 3 2  ) 2    ⩾ a d + b d + c d + d 2 1 8  ⩾ a 2 + b 2 + c 2 + d 2 1 8  > a 2 + b 2 + c 2 + d 2 1 6   
problem6  ask min  M \textbf{problem6} \ \text{ask} \min {M} problem6   ask min M 
∣ a b ( a 2 − b 2 ) + b c ( b 2 − c 2 ) + c a ( c 2 − a 2 ) ∣ ⩽ M ( a 2 + b 2 + c 2 ) 2 \left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leqslant M\left(a^{2}+b^{2}+c^{2}\right)^{2}
 ∣ ∣ ∣  a b ( a 2 − b 2 ) + b c ( b 2 − c 2 ) + c a ( c 2 − a 2 ) ∣ ∣ ∣  ⩽ M ( a 2 + b 2 + c 2 ) 2 
L H S = a b ( a 2 − b 2 + c 2 − c 2 ) + b c ( b 2 − c 2 ) + c a ( c 2 − a 2 )   = b ( b 2 − c 2 ) ( c − a ) + a ( c − a ) ( c + a ) ( c − b )   = − ( a − b ) ( b − c ) ( c − a ) ( a + b + c )   let  x = a − b , y = b − c , z = c − a , s = a + b + c \begin{gathered}
L H S=a b\left(a^{2}-b^{2}+c^{2}-c^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right) \\ \ \\
=b\left(b^{2}-c^{2}\right)(c-a)+a(c-a)(c+a)(c-b) \\ \ \\
=-(a-b)(b-c)(c-a)(a+b+c) \\ \ \\
\text{let } x=a-b, y = b-c, z=c-a, s=a+b+c
\end{gathered}
 L H S = a b ( a 2 − b 2 + c 2 − c 2 ) + b c ( b 2 − c 2 ) + c a ( c 2 − a 2 )   = b ( b 2 − c 2 ) ( c − a ) + a ( c − a ) ( c + a ) ( c − b )   = − ( a − b ) ( b − c ) ( c − a ) ( a + b + c )   let  x = a − b , y = b − c , z = c − a , s = a + b + c  
⇔ 9 ∣ s x y z ∣ ⩽ M ( s 2 + x 2 + y 2 + z 2 ) 2 , x + y + z = 0   \begin{gathered}
\Leftrightarrow 9|sxyz| \leqslant M\left(s^{2}+x^{2}+y^{2}+z^{2}\right)^{2}, \quad x +y+z =0 \\ \ \\ 
\end{gathered}
 ⇔ 9 ∣ s x y z ∣ ⩽ M ( s 2 + x 2 + y 2 + z 2 ) 2 , x + y + z = 0    
i) \textbf{i)} i) 
x 2 + y 2 + z 2 = x 2 + y 2 + ( x + y ) 2 = 2 ( ( x + y ) 2 − x y )   ⩾ 2 ( ( x + y ) 2 − ( x + y ) 2 4 ) = 3 2 ( x + y ) 2   ∣ s x y z ∣ = ∣ s x y ( x + y ) ∣ ⩽ ∣ s ∣ ( x + y ) 3 4 \begin{gathered}
x^{2}+y^{2}+z^{2}=x^{2}+y^{2}+(x+y)^{2}=2\left((x+y)^{2}-x y\right) \\ \ \\
\geqslant 2\left((x+y)^{2}-\frac{(x+y)^{2}}{4}\right)=\frac{3}{2}(x+y)^{2} \\ \ \\
|s x y z|=|s x y(x+y)| \leqslant |s| \frac{(x+y)^{3}}{4}
\end{gathered}
 x 2 + y 2 + z 2 = x 2 + y 2 + ( x + y ) 2 = 2 ( ( x + y ) 2 − x y )   ⩾ 2 ( ( x + y ) 2 − 4 ( x + y ) 2  ) = 2 3  ( x + y ) 2   ∣ s x y z ∣ = ∣ s x y ( x + y ) ∣ ⩽ ∣ s ∣ 4 ( x + y ) 3   
ii) \textbf{ii)} ii) 
let  t = x + y   ⇔ ask ∣ s ∣ t 3 ⩽ ? ( s 2 + 3 2 t 2 ) 2   ⇔ ask s 2 t 6 ⩽   ? ( 2 s 2 + 3 t 2 ) 4 4   we have 2 s 2 t 6 = 2 s 2 ⋅ t 2 ⋅ t 2 ⋅ t 2 ⩽ ( 2 s 2 + 3 t 2 4 ) 4   4 ⋅ 2 ∣ s ∣ t 3 ⩽ ( 2 s 2 + 3 t 2 ) 2 4   ∣ s x y z ∣ ⩽ 1 16 2 ( s 2 + x 2 + y 2 + z 2 ) 2 , M = 9 16 2   { 2 ( a + b + c ) = c − a a + b + c = 3 c − a = 3 2 a − b = b − c ⇒ { b = 1 c − a = 3 2 a + c = 2   ( a , b , c ) = ( 1 − 3 2 , 1 , 1 + 3 2 ) \begin{gathered}
\text{let } t = x+y \\ \ \\
\Leftrightarrow \text{ask} \quad |s| t^{3} \leqslant ?\left(s^{2}+\frac{3}{2} t^{2}\right)^{2} \\ \ \\
\Leftrightarrow \text{ask} \quad s^{2} t^{6} \leqslant \ ? \frac{\left(2 s^{2}+3 t^{2}\right)^{4}}{4} \\ \ \\
\text{we have} \quad 2 s^{2} t^{6}=2 s^{2} \cdot t^{2} \cdot t^{2} \cdot t^{2} \leqslant\left(\frac{2 s^{2}+3 t^{2}}{4}\right)^{4} \\ \ \\
4 \cdot \sqrt{2}|s| t^{3} \leqslant \frac{\left(2 s^{2}+3 t^{2}\right)^{2}}{4} \\ \ \\
|s x y z| \leqslant \frac{1}{16 \sqrt{2}}\left(s^{2}+x^{2}+y^{2}+z^{2}\right)^{2}, M=\frac{9}{16 \sqrt{2}} \\ \ \\
\left\{\begin{gathered}
\sqrt{2}(a+b+c)=c-a \\
a+b+c=3 \\
c-a=3 \sqrt{2} \\
a-b=b-c
\end{gathered}\right. \Rightarrow 
\left\{\begin{gathered}
b=1 \\
c-a=3 \sqrt{2} \\
a+c=2
\end{gathered}\right. \\ \ \\
(a, b, c)=\left(1-\frac{3}{\sqrt{2}}, 1,1+\frac{3}{\sqrt{2}}\right)
\end{gathered}
 let  t = x + y   ⇔ ask ∣ s ∣ t 3 ⩽ ? ( s 2 + 2 3  t 2 ) 2   ⇔ ask s 2 t 6 ⩽   ? 4 ( 2 s 2 + 3 t 2 ) 4    we have 2 s 2 t 6 = 2 s 2 ⋅ t 2 ⋅ t 2 ⋅ t 2 ⩽ ( 4 2 s 2 + 3 t 2  ) 4   4 ⋅ 2  ∣ s ∣ t 3 ⩽ 4 ( 2 s 2 + 3 t 2 ) 2    ∣ s x y z ∣ ⩽ 1 6 2  1  ( s 2 + x 2 + y 2 + z 2 ) 2 , M = 1 6 2  9    ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧  2  ( a + b + c ) = c − a a + b + c = 3 c − a = 3 2  a − b = b − c  ⇒ ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧  b = 1 c − a = 3 2  a + c = 2    ( a , b , c ) = ( 1 − 2  3  , 1 , 1 + 2  3  )  
Cauchy求反技术 
已知 a + b + c + d = 4 a+b+c+d = 4 a + b + c + d = 4  , 证明
a 1 + b 2 c + b 1 + c 2 d + c 1 + d 2 a + d 1 + a 2 b ≥ 2 \frac{a}{1+b^{2} c}+\frac{b}{1+c^{2} d}+\frac{c}{1+d^{2} a}+\frac{d}{1+a^{2} b} \geq 2
 1 + b 2 c a  + 1 + c 2 d b  + 1 + d 2 a c  + 1 + a 2 b d  ≥ 2 
a 1 + b 2 c = a − a b 2 c 1 + b 2 c ⩾ a − 2 b 2 c 2 b c ⩾ a − b ( a + a c ) 4   \begin{gathered}
\frac{a}{1+b^{2} c}=a-\frac{a b^{2} c}{1+b^{2} c} \geqslant a-\frac{2 b^{2} c}{2 b \sqrt{c}} \geqslant a-\frac{b(a+a c)}{4}\\ \ \\ 
\end{gathered}
 1 + b 2 c a  = a − 1 + b 2 c a b 2 c  ⩾ a − 2 b c  2 b 2 c  ⩾ a − 4 b ( a + a c )     
2 ∑ c y c a b = ( ∑ c y c a ) 2 − ∑ c y c ( a 2 ) ⇒   ⇒ ( ∑ c y c a ) 2 = 2 ∑ c y c a b + ∑ c y c a 2 ⩾ 4 ∑ c y c a b   ⇒ ∑ c y c a b ⩽ 1 4 ( ∑ c y c a ) 2   ( ∑ c y c 4 a ) 3 = 4 ∑ c y c 4 a 3 + ( 3 1 ) ( 4 1 ) ∑ c y c 4 a b c   16 ∑ c y c a b c ⩽ ( ∑ c y c a ) 3 \begin{gathered}
2 \sum_{c y c} a b=\left(\sum_{c y c} a\right)^{2}-\sum_{c y c}\left(a^{2}\right) \Rightarrow \\ \ \\
\Rightarrow \quad\left(\sum_{cyc} a\right)^{2}=2 \sum_{c y c} a b+\sum_{c y c} a^{2} \geqslant 4 \sum_{cyc}ab \\ \ \\
\Rightarrow \sum_{c y c} a b \leqslant \frac{1}{4}\left(\sum_{c y c} a\right)^{2} \\ \ \\
\left(\sum_{c yc4} a\right)^{3}=4 \sum_{c y c 4} a^{3}+\left(\begin{gathered}
3 \\
1
\end{gathered}\right)\left(\begin{gathered}
4 \\
1
\end{gathered}\right) \sum_{c y c 4} a b c \\ \ \\
16 \sum_{c y c} a b c \leqslant(\sum_{cyc} a)^{3}
\end{gathered}
 2 c y c ∑  a b = ( c y c ∑  a ) 2 − c y c ∑  ( a 2 ) ⇒   ⇒ ( c y c ∑  a ) 2 = 2 c y c ∑  a b + c y c ∑  a 2 ⩾ 4 c y c ∑  a b   ⇒ c y c ∑  a b ⩽ 4 1  ( c y c ∑  a ) 2   ( c y c 4 ∑  a ) 3 = 4 c y c 4 ∑  a 3 + ( 3 1  ) ( 4 1  ) c y c 4 ∑  a b c   1 6 c y c ∑  a b c ⩽ ( c y c ∑  a ) 3  
AM-GM   and   Chebyshev \textbf{AM-GM} \ \textbf{and} \ \textbf{Chebyshev} AM-GM   and   Chebyshev  
Chebyshev \textbf{Chebyshev} Chebyshev 
a 1 b 1 + a 2 b 1 + … + a n b n ⩾ 1 n ( a 1 + a 2 + ⋯ + a n ) ( b 1 + b 2 + … + b n ) a_{1} b_{1}+a_{2} b_{1}+\ldots+a_{n} b_{n} \geqslant \frac{1}{n}\left(a_{1}+a_{2}+\dots+a_{n}\right)\left(b_{1}+b_{2}+\ldots+b_{n}\right)
 a 1  b 1  + a 2  b 1  + … + a n  b n  ⩾ n 1  ( a 1  + a 2  + ⋯ + a n  ) ( b 1  + b 2  + … + b n  ) 
a + b + c = 3 , proof a+b+c=3, \quad \text{proof} a + b + c = 3 , proof 
∑ c y c ( a b ) 2 3 ⩽ 3   ( a + b + c ) 2 ⩾ 1 9 ( a + b + c ) ( 1 + 1 + 1 ) = 1 3 ( a + b + c )   ( a + b + c ) 2 = ∑ c y c a 2 + 2 ∑ c y c a b ⩾ 3 ∑ c y c a b   ⇒ ( ∑ c y c a ) 2 = 2 3 ( ∑ c y c a ) 2 + 1 3 ( ∑ c y c a ) 2 ⩾ 2 ∑ c y c a + ∑ c y c a b   = ∑ c y c ( a + a + a b ) = ∑ c y c ( a + b + a b ) ⩾ 3 ∑ c y c ( a b ) 2 / 3 \begin{gathered}
\sum_{c y c}(a b)^{\frac{2}{3}} \leqslant 3 \\ \ \\
(a+b+c)^{2} \geqslant \frac{1}{9}(a+b+c)(1+1+1)=\frac{1}{3}(a+b+c) \\ \ \\
(a+b+c)^{2}=\sum_{c y c} a^{2}+2 \sum_{c y c} a b \geqslant 3 \sum_{c y c} a b \\ \ \\
\Rightarrow \left(\sum_{c yc} a\right)^{2}=\frac{2}{3}\left(\sum_{c y c} a\right)^{2}+\frac{1}{3}\left(\sum_{c y c} a\right)^{2} \geqslant 2 \sum_{c yc} a+\sum_{c y c} a b \\ \ \\
=\sum_{c y c}(a+a+a b)=\sum_{c y c}(a+b+a b) \geqslant 3 \sum_{c y c}(a b)^{2 / 3}
\end{gathered}
 c y c ∑  ( a b ) 3 2  ⩽ 3   ( a + b + c ) 2 ⩾ 9 1  ( a + b + c ) ( 1 + 1 + 1 ) = 3 1  ( a + b + c )   ( a + b + c ) 2 = c y c ∑  a 2 + 2 c y c ∑  a b ⩾ 3 c y c ∑  a b   ⇒ ( c y c ∑  a ) 2 = 3 2  ( c y c ∑  a ) 2 + 3 1  ( c y c ∑  a ) 2 ⩾ 2 c y c ∑  a + c y c ∑  a b   = c y c ∑  ( a + a + a b ) = c y c ∑  ( a + b + a b ) ⩾ 3 c y c ∑  ( a b ) 2 / 3  
Rearrangement   inequality \textbf{Rearrangement} \ \textbf{inequality} Rearrangement   inequality 
a + b + c = 3 , ∑ c y c a ⩾ ∑ c y c a b   ∑ c y c a = 1 3 ⋅ ( ∑ c y c a ) ( ∑ c y c a ) = 1 3 ( ∑ c y c a ) 2   a 2 + b 2 + c 2 ⩾ a b + b c + c a ∑ c y c a 2 ⩾ ∑ c y c a b ∑ c y c a ⩾ 1 3 ⋅ 3 ∑ c y c a b = ∑ c y c a b \begin{gathered}
a+b+c =3, \quad \sum_{c y c} a \geqslant \sum_{c y c} a b \\ \ \\
\sum_{c y c} a=\frac{1}{3} \cdot\left(\sum_{c y c} a\right)\left(\sum_{c y c} a\right)=\frac{1}{3}\left(\sum_{c y c} a\right)^{2} \\ \ \\
\begin{gathered}
&a^{2}+b^{2}+c^{2} \geqslant a b+b c+c a\\
&\sum_{c y c} a^{2} \geqslant \sum_{c y c} a b
\end{gathered} \\
\sum_{c y c} a \geqslant \frac{1}{3} \cdot 3 \sum_{c y c} a b=\sum_{c y c} a b
\end{gathered}
 a + b + c = 3 , c y c ∑  a ⩾ c y c ∑  a b   c y c ∑  a = 3 1  ⋅ ( c y c ∑  a ) ( c y c ∑  a ) = 3 1  ( c y c ∑  a ) 2    a 2 + b 2 + c 2 ⩾ a b + b c + c a c y c ∑  a 2 ⩾ c y c ∑  a b  c y c ∑  a ⩾ 3 1  ⋅ 3 c y c ∑  a b = c y c ∑  a b  
problem \textbf{problem} problem  
a + b + c + d = 4 ,  proof a+b+c+d=4, \ \text{proof} a + b + c + d = 4 ,   proof 
∑ c y c a b − ∑ c y c a b 2 c   ⇔ a b + b c + c d + d a ⩽ a b 2 c + b c 2 d + c d 2 a + d a 2 b   L H S = 1 4 ( b + c + d + a ) ( a b + b c + c d + d a )   ⩽ a b 2 + b c 2 + c d 2 + d a 2 = 1 4 ( c + d + a + b ) ( a b 2 + b c 2 + c d 2 + d a 2 )   ⩽ a b 2 c + b c 2 d + c d 2 a + d a 2 b \begin{gathered}
\sum_{c y c} a b-\sum_{c y c} a b^{2} c \\ \ \\
\Leftrightarrow a b+b c+c d+d a \leqslant a b^{2} c+b c^{2} d+c d^{2} a+d a^{2} b \\ \ \\
L H S=\frac{1}{4}(b+c+d+a)(a b+b c+c d+d a) \\ \ \\
\leqslant a b^{2}+b c^{2}+c d^{2}+d a^{2}=\frac{1}{4}(c+d+a+b)\left(a b^{2}+b c^{2}+c d^{2}+d a^{2}\right) \\ \ \\
\leqslant a b^{2} c+b c^{2} d+c d^{2} a+d a^{2} b
\end{gathered}
 c y c ∑  a b − c y c ∑  a b 2 c   ⇔ a b + b c + c d + d a ⩽ a b 2 c + b c 2 d + c d 2 a + d a 2 b   L H S = 4 1  ( b + c + d + a ) ( a b + b c + c d + d a )   ⩽ a b 2 + b c 2 + c d 2 + d a 2 = 4 1  ( c + d + a + b ) ( a b 2 + b c 2 + c d 2 + d a 2 )   ⩽ a b 2 c + b c 2 d + c d 2 a + d a 2 b  
Cauchy求反技术的技巧 \textbf{Cauchy求反技术的技巧} Cauchy 求反技术的技巧 
a , b , c > 0 , a 2 + b 2 + c 2 = 3  proof   1 a 3 + 2 + 1 b 3 + 2 + 1 c 3 + 2 ⩾ 1   1 a 3 + 2 = 1 2 − a 3 2 ( a 3 + 2 ) \begin{gathered}
a, b, c>0, \quad a^{2}+b^{2}+c^{2}=3 \ \text{proof} \\ \ \\
\frac{1}{a^{3}+2}+\frac{1}{b^{3}+2}+\frac{1}{c^{3}+2} \geqslant 1 \\ \ \\
\frac{1}{a^{3}+2}=\frac{1}{2}-\frac{a^{3}}{2\left(a^{3}+2\right)}
\end{gathered}
 a , b , c > 0 , a 2 + b 2 + c 2 = 3   proof   a 3 + 2 1  + b 3 + 2 1  + c 3 + 2 1  ⩾ 1   a 3 + 2 1  = 2 1  − 2 ( a 3 + 2 ) a 3   
连分数 
连分数相关定义 
表示 \textbf{表示} 表示 
[ a 0 , a 1 ] = a 0 + 1 a 1   [ a 0 , a 1 , … , a n − 1 , a n ] = [ a 0 , a 1 , … , a n − 2 , a n − 1 + 1 a n ] \begin{gathered}
\left[a_{0}, a_{1}\right]=a_{0}+\frac{1}{a_{1}} \\ \ \\
\left[a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}\right]=\left[a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}+\frac{1}{a_{n}}\right]
\end{gathered}
 [ a 0  , a 1  ] = a 0  + a 1  1    [ a 0  , a 1  , … , a n − 1  , a n  ] = [ a 0  , a 1  , … , a n − 2  , a n − 1  + a n  1  ]  
p 0 = a 0 , p 1 = a 1 a 0 + 1 , p n = a n p n − 1 + p n − 2 ( 2 ⩽ n ⩽ N ) q 0 = 1 , q 1 = a 1 , q n = a n q n − 1 + q n − 2 ( 2 ⩽ n ⩽ N )   [ a 0 , a 1 , … . . , a n ] = p n q n \begin{gathered}
p_{0}=a_{0}, \quad p_{1}=a_{1} a_{0}+1, \quad p_{n}=a_{n} p_{n-1}+p_{n-2} \quad(2 \leqslant n \leqslant N) \\ 
q_{0}=1, \quad q_{1}=a_{1}, \quad q_{n}=a_{n} q_{n-1}+q_{n-2} \quad \quad \quad(2 \leqslant n \leqslant N) \\ \ \\
\left[a_{0}, a_{1}, \ldots . ., a_{n}\right]=\frac{p_{n}}{q_{n}}
\end{gathered}
 p 0  = a 0  , p 1  = a 1  a 0  + 1 , p n  = a n  p n − 1  + p n − 2  ( 2 ⩽ n ⩽ N ) q 0  = 1 , q 1  = a 1  , q n  = a n  q n − 1  + q n − 2  ( 2 ⩽ n ⩽ N )   [ a 0  , a 1  , … . . , a n  ] = q n  p n    
proof \textbf{proof} proof 
[ a 0 , a 1 , … , a m − 1 , a m ] = p m q m = a m p m − 1 + p m − 2 a m q m − 1 + q m − 2   [ a 0 , a 1 , … , a m − 1 , a m , a m + 1 ] = [ a 0 , a 1 , … . , a m − 1 , a m + 1 a m + 1 ]   = ( a m + 1 a m + 1 ) p m − 1 + p m − 2 ( a m + 1 a m + 1 ) q m − 1 + q m − 2 = a m + 1 ( a m p m − 1 + p m − 2 ) + p m − 1 a m + 1 ( a m q m − 1 + q m − 2 ) + q m − 1   = p m + 1 q m + 1 \begin{gathered}
\left[a_{0}, a_{1}, \ldots, a_{m-1}, a_{m}\right]=\frac{p_{m}}{q_{m}}=\frac{a_{m} p_{m-1}+p_{m-2}}{a_{m} q_{m-1}+q_{m-2}} \\ \ \\
\left[a_{0}, a_{1}, \ldots, a_{m-1}, a_{m}, a_{m+1}\right]=\left[a_{0}, a_{1}, \ldots ., a_{m-1}, a_{m}+\frac{1}{a_{m+1}}\right] \\ \ \\
=\frac{\left(a_{m}+\frac{1}{a_{m+1}}\right) p_{m-1}+p_{m-2}}{\left(a_{m}+\frac{1}{a_{m+1}}\right) q_{m-1}+q_{m-2}}=\frac{a_{m+1}\left(a_{m} p_{m-1}+p_{m-2}\right)+p_{m-1}}{a_{m+1}\left(a_{m} q_{m-1}+q_{m-2}\right)+q_{m-1}} \\ \ \\
= \frac{p_{m+1}}{q_{m+1}}
\end{gathered}
 [ a 0  , a 1  , … , a m − 1  , a m  ] = q m  p m   = a m  q m − 1  + q m − 2  a m  p m − 1  + p m − 2     [ a 0  , a 1  , … , a m − 1  , a m  , a m + 1  ] = [ a 0  , a 1  , … . , a m − 1  , a m  + a m + 1  1  ]   = ( a m  + a m + 1  1  ) q m − 1  + q m − 2  ( a m  + a m + 1  1  ) p m − 1  + p m − 2   = a m + 1  ( a m  q m − 1  + q m − 2  ) + q m − 1  a m + 1  ( a m  p m − 1  + p m − 2  ) + p m − 1     = q m + 1  p m + 1    
lemma1 \textbf{lemma1} lemma1 
p n q n = a n p n − 1 + p n − 2 a n q n − 1 + q n − 2 \frac{p_{n}}{q_{n}}=\frac{a_{n} p_{n-1}+p_{n-2}}{a_{n} q_{n-1}+q_{n-2}}
 q n  p n   = a n  q n − 1  + q n − 2  a n  p n − 1  + p n − 2   
构造递推式如下 
p n q n − 1 − p n − 1 q n = ( a n p n − 1 + p n − 2 ) q n − 1 − p n − 1 ( a n q n − 1 + q n − 2 )   = ( − 1 ) 1 ( p n − 1 q n − 2 − p n − 2 q n − 1 ) = ( − 1 ) n − 1 ( p 1 q 0 − p 0 q 1 ) = ( − 1 ) n − 1 \begin{gathered}
p_{n} q_{n-1}-p_{n-1} q_{n}=\left(a_{n} p_{n-1}+p_{n-2}\right) q_{n-1}-p_{n-1}\left(a_{n} q_{n-1}+q_{n-2}\right) \\ \ \\
=(-1)^{1}\left(p_{n-1} q_{n-2}-p_{n-2} q_{n-1}\right)=(-1)^{n-1}\left(p_1q_{0}-p_{0} q_{1}\right)=(-1)^{n-1}
\end{gathered}
 p n  q n − 1  − p n − 1  q n  = ( a n  p n − 1  + p n − 2  ) q n − 1  − p n − 1  ( a n  q n − 1  + q n − 2  )   = ( − 1 ) 1 ( p n − 1  q n − 2  − p n − 2  q n − 1  ) = ( − 1 ) n − 1 ( p 1  q 0  − p 0  q 1  ) = ( − 1 ) n − 1  
还有 
p n q n − 2 − p n − 2 q n = ( a n p n − 1 + p n − 2 ) q n − 2 − p n − 2 ( a n q n − 1 + q n − 2 )   = a n ( p n − 1 q n − 2 − p n − 2 q n − 1 ) = ( − 1 ) n − 2 ⋅ a n = ( − 1 ) n a n \begin{gathered}
p_{n} q_{n-2}-p_{n-2} q_{n}=\left(a_{n} p_{n-1}+p_{n-2}\right) q_{n-2}-p_{n-2}\left(a_{n} q_{n-1}+q_{n-2}\right) \\ \ \\
=a_{n}\left(p_{n-1} q_{n-2}-p_{n-2} q_{n-1}\right)=(-1)^{n-2} \cdot a_{n}=(-1)^{n} a_{n}
\end{gathered}
 p n  q n − 2  − p n − 2  q n  = ( a n  p n − 1  + p n − 2  ) q n − 2  − p n − 2  ( a n  q n − 1  + q n − 2  )   = a n  ( p n − 1  q n − 2  − p n − 2  q n − 1  ) = ( − 1 ) n − 2 ⋅ a n  = ( − 1 ) n a n   
p n q n − 1 − p n − 1 q n = ( − 1 ) n − 1 p n q n − 2 − p n − 2 q n = ( − 1 ) n a n   p n q n − p n − 1 q n − 1 = ( − 1 ) n − 1 q n − 1 q n   p n q n − p n − 2 q n − 2 = ( − 1 ) n a n q n − 2 q n \begin{gathered}
p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1} \\
\left.p_{n} q_{n-2}-p_{n-2} q_{n}=(-1\right)^{n} a_{n} \\ \ \\
\frac{p_{n}}{q_{n}}-\frac{p_{n-1}}{q_{n-1}}=\frac{(-1)^{n-1}}{q_{n-1} q_{n}} \\ \ \\
\frac{p_{n}}{q_{n}}-\frac{p_{n-2}}{q_{n-2}}=\frac{(-1)^{n} a_{n}}{q_{n-2} q_{n}}
\end{gathered}
 p n  q n − 1  − p n − 1  q n  = ( − 1 ) n − 1 p n  q n − 2  − p n − 2  q n  = ( − 1 ) n a n    q n  p n   − q n − 1  p n − 1   = q n − 1  q n  ( − 1 ) n − 1    q n  p n   − q n − 2  p n − 2   = q n − 2  q n  ( − 1 ) n a n    
由此可以知道分奇偶项, 得到的单调性 
lemma2 \textbf{lemma2} lemma2  
if n > 3 , q n ⩾ n \text{if} \quad n > 3, \quad q_n \geqslant n if n > 3 , q n  ⩾ n 
q 0 = 1 , q 1 = a 1 ⩾ 1 q n = a n q n − 1 + q n − 2 ⩾ q n − 1 + 1 = n − 1 + 1 = n \begin{gathered}
q_{0}=1, \quad q_{1}=a_{1} \geqslant 1 \\
q_{n}=a_{n} q_{n-1}+q_{n-2} \geqslant q_{n-1}+1=n-1+1=n
\end{gathered}
 q 0  = 1 , q 1  = a 1  ⩾ 1 q n  = a n  q n − 1  + q n − 2  ⩾ q n − 1  + 1 = n − 1 + 1 = n  
根据数学归纳法, 证毕 
theorem1 \textbf{theorem1} theorem1  
x  可以用一个奇数个渐进分数的连分数表示出来 x\ \text{可以用一个奇数个渐进分数的连分数表示出来} x   可以用一个奇数个渐进分数的连分数表示出来  
那么也一定能用偶数个渐进分数的连分数表示 \text{那么也一定能用偶数个渐进分数的连分数表示} 那么也一定能用偶数个渐进分数的连分数表示 
[ a 0 , a 1 , … a n ] = [ a 0 , a 1 , … a n − 1 , 1 ] , a n ⩾ 2   if a n = 1 , [ a 0 , a 1 , … , a n − 1 , 1 ] = [ a 0 , a 1 , … , a n − 2 , a n − 1 + 1 ] \begin{gathered}
\left[a_{0}, a_{1}, \dots a_{n}\right]=\left[a_{0}, a_{1}, \dots a_{n}-1,1\right], \quad a_n \geqslant 2 \\ \ \\
\text{if} \quad a_n = 1, \left[a_{0}, a_{1}, \ldots, a_{n-1}, 1\right]=\left[a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}+1\right]
\end{gathered}
 [ a 0  , a 1  , … a n  ] = [ a 0  , a 1  , … a n  − 1 , 1 ] , a n  ⩾ 2   if a n  = 1 , [ a 0  , a 1  , … , a n − 1  , 1 ] = [ a 0  , a 1  , … , a n − 2  , a n − 1  + 1 ]  
theorem2 \textbf{theorem2} theorem2  
连分数的第 n n n   个完全商  
a n ′ = [ a n , a n + 1 , … , a N ] ( 0 ⩽ n ⩽ N ) a_{n}^{\prime}=\left[a_{n}, a_{n+1}, \ldots, a_{N}\right] \quad(0 \leqslant n \leqslant N) a n ′  = [ a n  , a n + 1  , … , a N  ] ( 0 ⩽ n ⩽ N ) 
x = a 0 ′ , x = a 0 + 1 a 1 ′ = a 0 a 1 ′ + 1 a 1 ′   [ a n , a 1 , … , a N ] = [ a 0 , a 1 , … a n − 1 , [ a n , a n + 1 , … , a N ] ]   = [ a n , a n + 1 … , a n ] p n − 1 + p n − 2 [ a n , a n + 1 … , a n ] q n − 1 + q n − 2   x = a n ′ p n − 1 + p n − 2 a n ′ q n − 1 + q n − 2 \begin{gathered}
x=a_{0}^{\prime}, \quad x=a_{0}+\frac{1}{a_{1}^{\prime}}=\frac{a_{0} a_{1}^{\prime}+1}{a_{1}^{\prime}} \\ \ \\
\left[a_{n}, a_{1}, \ldots, a_{N}\right]=\left[a_{0}, a_{1}, \ldots a_{n-1},\left[a_{n}, a_{n+1}, \dots, a_{N}\right]\right] \\ \ \\
=\frac{\left[a_{n}, a_{n+1} \ldots, a_{n}\right] p_{n-1}+p_{n-2}}{\left[a_{n}, a_{n+1} \dots, a_{n}\right] q_{n-1}+q_{n-2}} \\ \ \\
x=\frac{a_{n}' p_{n-1}+p_{n-2}}{a_{n}' q_{n-1}+q_{n-2}}
\end{gathered}
 x = a 0 ′  , x = a 0  + a 1 ′  1  = a 1 ′  a 0  a 1 ′  + 1    [ a n  , a 1  , … , a N  ] = [ a 0  , a 1  , … a n − 1  , [ a n  , a n + 1  , … , a N  ] ]   = [ a n  , a n + 1  … , a n  ] q n − 1  + q n − 2  [ a n  , a n + 1  … , a n  ] p n − 1  + p n − 2     x = a n ′  q n − 1  + q n − 2  a n ′  p n − 1  + p n − 2    
theorem3 \textbf{theorem3} theorem3  
除了  a N = 1 , 有 a N − 1 = [ a N − 1 ′ ] − 1 \text{除了} \ a_N = 1, \textbf{有} a_{N-1} = [a_{N-1}']-1 除了   a N  = 1 , 有 a N − 1  = [ a N − 1 ′  ] − 1  
其他情况,  a n = [ a n ′ ] \text{其他情况, }a_n = [a_n'] 其他情况 ,  a n  = [ a n ′  ] 
注意到,  a n ′ = a n + 1 a n + 1 ′ ( 0 ⩽ n ⩽ N − 1 ) \text{注意到, }a_{n}^{\prime}=a_{n}+\frac{1}{a_{n+1}'} \quad(0 \leqslant n \leqslant N-1)
 注意到 ,  a n ′  = a n  + a n + 1 ′  1  ( 0 ⩽ n ⩽ N − 1 ) 
i) N = 0 , a 0 = a 0 ′ = [ a 0 ′ ]   ii) N > 0 ,   n = N − 1 , a n + 1 ′ = 1 , a N = 1 , 我们有   a N − 1 ′ = a N − 1 + 1 a N ′ = a N − 1 + 1 > 1   from   n + 1  down to  n , a n + 1 ′ > 1 ( 0 ⩽ n ⩽ N − 1 )   a n < a n ′ < a n + 1 ( 0 ⩽ n ⩽ N − 1 )   a n = [ a n ′ ] ( 0 ⩽ n ≤ N − 1 ) \begin{gathered}
\textbf{i)}\quad N = 0, a_0 = a_0'=[a_0'] \\ \ \\
\textbf{ii)}\quad N > 0, \ n = N-1, a_{n+1}^{\prime}=1, a_{N}=1, \text{我们有} \\ \ \\
a_{N-1}^{\prime}=a_{N-1}+\frac{1}{a_{N}^{\prime}}=a_{N-1}+1>1 \\ \ \\
\text{from } \ n + 1 \ \text{down to} \ n, a_{n+1}^{\prime}>1 \quad(0 \leqslant n \leqslant N-1) \\ \ \\
a_{n}<a_{n}^{\prime}<a_{n}+1 \quad(0 \leqslant n \leqslant N-1) \\ \ \\
a_{n}=\left[a_{n}^{\prime}\right] \quad(0 \leqslant n \leq N-1)
\end{gathered}
 i) N = 0 , a 0  = a 0 ′  = [ a 0 ′  ]   ii) N > 0 ,   n = N − 1 , a n + 1 ′  = 1 , a N  = 1 , 我们有   a N − 1 ′  = a N − 1  + a N ′  1  = a N − 1  + 1 > 1   from    n + 1   down to   n , a n + 1 ′  > 1 ( 0 ⩽ n ⩽ N − 1 )   a n  < a n ′  < a n  + 1 ( 0 ⩽ n ⩽ N − 1 )   a n  = [ a n ′  ] ( 0 ⩽ n ≤ N − 1 )  
theorem4   连分数唯一展开 \textbf{theorem4} \ \textbf{连分数唯一展开} theorem4   连分数唯一展开  
如果两个简单连分数  
[ a 0 , a 1 , … , a n − 1 , a n ′ ] , [ b 0 , b 1 , … , b n − 1 , b n ′ ] 有同样的值  x [a_0, a_1, \ldots, a_{n-1}, a_n^{\prime}], [b_0, b_1, \ldots, b_{n-1}, b_n^{\prime}] \text{有同样的值 } x [ a 0  , a 1  , … , a n − 1  , a n ′  ] , [ b 0  , b 1  , … , b n − 1  , b n ′  ] 有同样的值   x  
a N > 1 , b M > 1 , M = N  并且这两个连分数完全相同 a_N > 1, b_M > 1, M=N \ \text{并且这两个连分数完全相同} a N  > 1 , b M  > 1 , M = N   并且这两个连分数完全相同 
i) n = m   根据 theorem3 , a 0 = [ x ] = b 0 , 那么    x = [ a 0 , a 1 , … , a n − 1 , a n ′ ] = [ a 0 , a 1 , … , a n − 1 , b n ′ ]   if  n = 1 , a 0 + 1 a 1 ′ = a 0 + 1 b 1 ′ ⇒ a 1 ′ = b 1 ′ ⇒ a 1 = b 1   a n ′ p n − 1 + p n − 2 a n ′ q n − 1 + q n − 2 = b n ′ p n − 1 + p n − 2 b n ′ q n − 1 + q n − 2   ( a n ′ − b n ′ ) ( p n − 1 q n − 2 − p n − 2 q n − 1 ) = 0   p n − 1 q n − 2 − p n − 2 q n − 1 = ( − 1 ) n ≠ 0 ⇒ a n ′ = b n ′   ⇒ a n = b n \begin{gathered}
\textbf{i)} \quad n = m \\ \ \\
\text{根据 }\text{theorem3}, a_0 = [x] = b_0, \text{那么 }\\ \ \\
x=\left[a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}^{\prime}\right]=\left[a_{0}, a_{1}, \ldots, a_{n-1}, b_{n}^{\prime}\right] \\ \ \\
\text{if} \ n = 1, a_{0}+\frac{1}{a_{1}^{\prime}}=a_{0}+\frac{1}{b_{1}^{\prime}} \Rightarrow a_{1}^{\prime}=b_{1}^{\prime} \Rightarrow a_{1}=b_1 \\ \ \\
\frac{a_{n}^{\prime} p_{n-1}+p_{n-2}}{a_{n}^{\prime} q_{n-1}+q_{n-2}}=\frac{b_{n}^{\prime} p_{n-1}+p_{n-2}}{b_{n}^{\prime} q_{n-1}+q_{n-2}} \\ \ \\
\left(a_{n}^{\prime}-b_{n}^{\prime}\right)\left(p_{n-1} q_{n-2}-p_{n-2} q_{n-1}\right)=0 \\ \ \\
p_{n-1} q_{n-2}-p_{n-2} q_{n-1}=(-1)^{n} \neq 0 \Rightarrow a_{n}^{\prime}=b_{n}^{\prime} \\ \ \\
\Rightarrow a_{n}=b_{n}
\end{gathered}
 i) n = m   根据   theorem3 , a 0  = [ x ] = b 0  , 那么     x = [ a 0  , a 1  , … , a n − 1  , a n ′  ] = [ a 0  , a 1  , … , a n − 1  , b n ′  ]   if   n = 1 , a 0  + a 1 ′  1  = a 0  + b 1 ′  1  ⇒ a 1 ′  = b 1 ′  ⇒ a 1  = b 1    a n ′  q n − 1  + q n − 2  a n ′  p n − 1  + p n − 2   = b n ′  q n − 1  + q n − 2  b n ′  p n − 1  + p n − 2     ( a n ′  − b n ′  ) ( p n − 1  q n − 2  − p n − 2  q n − 1  ) = 0   p n − 1  q n − 2  − p n − 2  q n − 1  = ( − 1 ) n  = 0 ⇒ a n ′  = b n ′    ⇒ a n  = b n   
ii) N ⩽ M , ∀ n ⩽ N a n = b n   M > N , p N q N = x = [ a 0 , a 1 , … , a N ] = [ a 0 , a 1 , … , a N , b N + 1 , … , b M ]   = b N + 1 ′ p N + p N − 1 b N + 1 ′ q N + q N − 1 ⇒ p N q N − 1 − p N − 1 q N = 0   这是不可能的    证明过程中, 我们假定了 n ⩽ N 的部分, 所以   b n ′ = [ b N + 1 , … , b M ] \begin{gathered}
\textbf{ii)} \quad N \leqslant M, \forall n \leqslant N \\
a_n = b_n \\ \ \\
M > N, \frac{p_{N}}{q_N}=x=\left[a_{0}, a_{1}, \ldots , a_{N}\right]=\left[a_{0}, a_{1}, \ldots, a_{N}, b_{N+1}, \ldots, b_{M}\right] \\ \ \\
=\frac{b_{N+1}^{\prime} p_{N}+p_{N-1}}{b_{N+1}^{\prime} q_{N}+ q_{N-1}} \Rightarrow p_{N}q_{ N-1}-p_{N-1} q_{N}=0 \\ \ \\
\text{这是不可能的 }\\ \ \\
\text{证明过程中, 我们假定了} n \leqslant N \text{的部分, 所以} \\ \ \\
b_{n}^{\prime}=\left[b_{N+1}, \ldots, b_{M}\right]
\end{gathered}
 ii) N ⩽ M , ∀ n ⩽ N a n  = b n    M > N , q N  p N   = x = [ a 0  , a 1  , … , a N  ] = [ a 0  , a 1  , … , a N  , b N + 1  , … , b M  ]   = b N + 1 ′  q N  + q N − 1  b N + 1 ′  p N  + p N − 1   ⇒ p N  q N − 1  − p N − 1  q N  = 0   这是不可能的     证明过程中 ,  我们假定了 n ⩽ N 的部分 ,  所以   b n ′  = [ b N + 1  , … , b M  ]  
Euclid算法 
a 0 = [ x ] , x = a 0 + ξ 0 ( 0 ⩽ ξ 0 < 1 ) a_{0}=[x], \quad x=a_{0}+\xi_{0} \quad\left(0 \leqslant \xi_{0}<1\right)
 a 0  = [ x ] , x = a 0  + ξ 0  ( 0 ⩽ ξ 0  < 1 ) 
1 ξ 0 = a 1 ′ , [ a 1 ′ ] = a 1 , a 1 ′ = a 1 + ξ 1 ( 0 ⩽ ξ 1 < 1 )   1 ξ 1 = a 2 ′ = a 2 + ξ 2 ( 0 ⩽ ξ 2 < 1 ) \begin{gathered}
\frac{1}{\xi_{0}}=a_{1}^{\prime}, \quad\left[a_{1}^{\prime}\right]=a_{1}, \quad a_{1}^{\prime}=a_{1}+\xi_{1} \quad\left(0 \leqslant \xi_{1}<1\right) \\ \ \\
\frac{1}{\xi_{1}}=a_{2}^{\prime}=a_{2}+\xi_{2} \quad\left(0 \leqslant \xi_{2}<1\right)
\end{gathered}
 ξ 0  1  = a 1 ′  , [ a 1 ′  ] = a 1  , a 1 ′  = a 1  + ξ 1  ( 0 ⩽ ξ 1  < 1 )   ξ 1  1  = a 2 ′  = a 2  + ξ 2  ( 0 ⩽ ξ 2  < 1 )  
a 1 > 0 , a 2 > 0 , ⋯   a 1 > 0 , a 2 > 0 , … x = a 0 + ξ 0 ( 0 ⩽ ξ 0 < 1 ) 1 ξ 0 = a 1 ′ = a 1 + ξ 1 ( 0 ⩽ ξ 1 < 1 ) 1 ξ 1 = a 2 ′ = a 2 + ξ 2 ( 0 ⩽ ξ 2 < 1 ) \begin{gathered}
a_{1}>0, \quad a_{2}>0, \quad \cdots \\ \ \\ 
\begin{gathered}
&a_{1}>0, \quad a_{2}>0, \ldots\\
&x=a_{0}+\xi_{0} \quad\left(0 \leqslant \xi_{0}<1\right)\\
&\frac{1}{\xi_{0}}=a_{1}^{\prime}=a_{1}+\xi_{1} \quad\left(0 \leqslant \xi_{1}<1\right)\\
&\frac{1}{\xi_{1}}=a_{2}^{\prime}=a_{2}+\xi_{2} \quad\left(0 \leqslant \xi_{2}<1\right)
\end{gathered}
\end{gathered}
 a 1  > 0 , a 2  > 0 , ⋯    a 1  > 0 , a 2  > 0 , … x = a 0  + ξ 0  ( 0 ⩽ ξ 0  < 1 ) ξ 0  1  = a 1 ′  = a 1  + ξ 1  ( 0 ⩽ ξ 1  < 1 ) ξ 1  1  = a 2 ′  = a 2  + ξ 2  ( 0 ⩽ ξ 2  < 1 )   
有理数可以用连分数表示 
x = h k , h , k ∈ Z , k > 1 x=\frac{h}{k}, \quad h, k \in \mathbb{Z}, \quad k>1
 x = k h  , h , k ∈ Z , k > 1 
h k = a 0 + ξ 0 ⇒ h = a 0 k + ξ 0 k   let ξ 0 k = k 1 ⇒   1 ξ 0 = a 1 ′ = k k 1 = a 1 + ξ 1 ⇒ k = a 1 k 1 + ξ 1 k 1   let k 2 = ξ 1 k 1 ⇒ ⋯ \begin{gathered}
\frac{h}{k}=a_{0}+\xi_{0} \Rightarrow h=a_{0} k+\xi_{0} k \\ \ \\
\text{let} \quad \xi_{0}  k=k_1 \Rightarrow \\ \ \\
\frac{1}{\xi_{0}}=a_{1}^{\prime}=\frac{k}{k_{1}}=a_{1}+\xi_{1} \Rightarrow k=a_{1} k_{1}+\xi_{1} k_{1} \\ \ \\
\text{let} \quad k_{2}=\xi_{1} k_{1} \Rightarrow \cdots
\end{gathered}
 k h  = a 0  + ξ 0  ⇒ h = a 0  k + ξ 0  k   let ξ 0  k = k 1  ⇒   ξ 0  1  = a 1 ′  = k 1  k  = a 1  + ξ 1  ⇒ k = a 1  k 1  + ξ 1  k 1    let k 2  = ξ 1  k 1  ⇒ ⋯  
h = a 0 k + k 1 ( 0 < k 1 < k ) k = a 1 k 1 + k 2 ( 0 < k 2 < k 1 ) k 1 = … k N − 2 = a N − 1 k N − 1 + k N ( 0 < k N < k N − 1 ) k N − 1 = a N k N \begin{aligned}
&h=a_{0} k+k_{1} \quad\left(0<k_{1}<k\right)\\
&k=a_{1} k_{1}+k_{2} \quad\left(0<k_{2}<k_{1}\right)\\
&k_{1}=\dots\\
&k_{N-2}=a_{N-1} k_{N-1}+k_{N} \quad\left(0<k_{N}<k_{N-1}\right)\\
&k_{N-1}=a_{N} k_{N}
\end{aligned}
  h = a 0  k + k 1  ( 0 < k 1  < k ) k = a 1  k 1  + k 2  ( 0 < k 2  < k 1  ) k 1  = … k N − 2  = a N − 1  k N − 1  + k N  ( 0 < k N  < k N − 1  ) k N − 1  = a N  k N   
0 < 1 a N = 1 a N ′ = k N k N − 1 = ξ n − 1 < 1 0<\frac{1}{a_{N}}=\frac{1}{a_{N}^{\prime}}=\frac{k_{N}}{k_{N-1}}=\xi_{n-1}<1
 0 < a N  1  = a N ′  1  = k N − 1  k N   = ξ n − 1  < 1