这里对分析学基础理论, 极限和无穷级数部分做一个 review \textbf{review} review
在 knuth \text{knuth} knuth 的具体数学中, 很多理论都是建立在分析学基础上的
数列极限的补充问题
从每一个实数列中都可以选出一个收敛的或者是趋于无穷的子列
proof \textbf{proof}\quad proof 其中, 收敛很好证明
无穷性的证明, ∀ k ∈ N , choose n k ∈ N \forall k \in \mathbb{N}, \text{choose} \ n_k \in \mathbb{N} ∀ k ∈ N , choose n k ∈ N
∣ x n k ∣ > k and n k < n k + 1 , x n k |x_{n_k}| > k \ \textbf{and} \ n_k < n_{k+1}, {x_{n_k}} ∣ x n k ∣ > k and n k < n k + 1 , x n k 构成无穷子列
example1 \textbf{example1} example1
lim ‾ k → ∞ ( − 1 ) k k = lim n → ∞ inf k ⩾ n ( − 1 ) k k = { ( − 1 ) 2 m + 1 ( 2 m + 1 ) = − 1 n n = 2 m + 1 ( − 1 ) 2 m ⋅ ( − 1 ) 2 m + 1 = − 1 n + 1 n = 2 m } = 0 \mathop{\underline{\lim}}\limits_{k \rightarrow \infty} \frac{(-1)^{k}}{k}=\lim _{n \rightarrow \infty} \inf _{k \geqslant n} \frac{(-1)^{k}}{k}=\left\{\begin{gathered}
\frac{(-1)^{2m +1}}{(2 m+1)}=-\frac{1}{n} \quad n=2 m+1 \\ \ \\
\frac{(-1)^{2 m} \cdot(-1)}{2 m+1}=\frac{-1}{n+1} \quad n=2m
\end{gathered} \right\} =0
k → ∞ lim k ( − 1 ) k = n → ∞ lim k ⩾ n inf k ( − 1 ) k = ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ ( 2 m + 1 ) ( − 1 ) 2 m + 1 = − n 1 n = 2 m + 1 2 m + 1 ( − 1 ) 2 m ⋅ ( − 1 ) = n + 1 − 1 n = 2 m ⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎫ = 0
lim ‾ k → ∞ ( − 1 ) k k = lim n → ∞ sup k ⩾ n ( − 1 ) k k = { ( − 1 ) 2 m 2 m = 1 n n = 2 m ( − 1 ) 2 m + 2 2 m + 2 = 1 n + 1 n = 2 m + 1 } = 0 \mathop{\overline{\lim}}\limits _{k \rightarrow \infty} \frac{(-1)^{k}}{k}=\lim _{n \rightarrow \infty} \sup _{k \geqslant n} \frac{(-1)^{k}}{k}=\left\{\begin{gathered}
\frac{(-1)^{2m}}{2 m}=\frac{1}{n} & n=2 m \\ \ \\
\frac{(-1)^{2 m+2}}{2 m+2}=\frac{1}{n+1} & n=2 m+1
\end{gathered}\right\} = 0
k → ∞ lim k ( − 1 ) k = n → ∞ lim k ⩾ n sup k ( − 1 ) k = ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ 2 m ( − 1 ) 2 m = n 1 2 m + 2 ( − 1 ) 2 m + 2 = n + 1 1 n = 2 m n = 2 m + 1 ⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎫ = 0
下极限证明语言
∀ ε > 0 , i − ε < i n = inf k ⩾ n x k ⩽ x k \forall \varepsilon>0, \quad i-\varepsilon<i_n=\inf\limits_{k \geqslant n} x_{k} \leqslant x_{k} ∀ ε > 0 , i − ε < i n = k ⩾ n inf x k ⩽ x k
因为 ε \varepsilon ε 是任意的, 所以对于 x k {x_k} x k
任何部分极限都不能小于 i − ε i - \varepsilon i − ε , 也就是不能小于 i i i
补充阅读:《不等式的秘密》
阅读这部分内容, 主要是为了提升数感, 让自己的代数变形能力有进一步的提升
AM-GM不等式
problem1 \textbf{problem1} problem1
a , b , c > 0 , a b c = 1 , 证明 a, b, c>0, abc = 1, \text{证明} a , b , c > 0 , a b c = 1 , 证明
( a + b ) ( b + c ) ( c + a ) ⩾ ( a + 1 ) ( b + 1 ) ( c + 1 ) ⟹ a b ( a + b ) + b c ( b + c ) + c a ( c + a ) ⩾ a + b + c + a b + b c + c a \begin{gathered}
(a+b)(b+c)(c+a) \geqslant (a+1)(b+1)(c+1) \\
\Longrightarrow ab(a+b)+bc(b+c)+ca(c+a) \geqslant a+b+c+ab+bc+ca
\end{gathered}
( a + b ) ( b + c ) ( c + a ) ⩾ ( a + 1 ) ( b + 1 ) ( c + 1 ) ⟹ a b ( a + b ) + b c ( b + c ) + c a ( c + a ) ⩾ a + b + c + a b + b c + c a
重点在于轮换对称的构造
L H S c y c = { a 2 b + a 2 c b 2 a + b 2 c c 2 a + c 2 b } { a 2 b + a b 2 b 2 c + b c 2 c 2 a + c a 2 } L H S_{c y c}=\left\{\begin{gathered}
a^{2} b+a^{2} c \\
b^{2} a+b^{2} c \\
c^2a+c^{2} b
\end{gathered}\right\} \quad \left\{\begin{gathered}
a^{2} b+a b^{2} \\
b^{2} c+b c^{2} \\
c^{2} a+c a^{2}
\end{gathered}\right\}
L H S c y c = ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ a 2 b + a 2 c b 2 a + b 2 c c 2 a + c 2 b ⎭ ⎪ ⎪ ⎬ ⎪ ⎪ ⎫ ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ a 2 b + a b 2 b 2 c + b c 2 c 2 a + c a 2 ⎭ ⎪ ⎪ ⎬ ⎪ ⎪ ⎫
2 L H S + ∑ c y c a b = ∑ c y c ( a 2 b + a 2 b + a 2 c + a 2 c + b c ) ⩾ 5 ∑ c y c a 2 L H S + ∑ c y c a = ∑ c y c ( a 2 b + a 2 b + a b 2 + a b 2 + c ) ⩾ 5 ∑ c y c a b \begin{gathered}
2 L H S+\sum_{c y c} a b=\sum_{c y c}\left(a^{2} b+a^{2} b+a^{2} c+a^{2} c+b c\right) \geqslant 5 \sum_{c y c}a \\
2 L H S+\sum_{c y c} a=\sum_{c y c}\left(a^{2} b+a^{2} b+a b^{2}+a b^{2}+c\right) \geqslant 5 \sum_{c y c} a b
\end{gathered}
2 L H S + c y c ∑ a b = c y c ∑ ( a 2 b + a 2 b + a 2 c + a 2 c + b c ) ⩾ 5 c y c ∑ a 2 L H S + c y c ∑ a = c y c ∑ ( a 2 b + a 2 b + a b 2 + a b 2 + c ) ⩾ 5 c y c ∑ a b
综上, L H S ⩾ ∑ c y c a + ∑ c y c a b \begin{gathered}
\text{综上, }L H S \geqslant \sum_{c y c} a+\sum_{c yc} a b
\end{gathered}
综上 , L H S ⩾ c y c ∑ a + c y c ∑ a b
problem2 4 n + 3 \textbf{problem2} \ 4n+3 problem2 4 n + 3 是数论中非常常见的数, 因此构造 3 4 \frac{3}{4} 4 3 也是很常见的
x , y , z > 0 , and x y z = 1 x,y,z>0, \textbf{and}\ xyz=1 x , y , z > 0 , and x y z = 1
x 3 ( 1 + y ) ( 1 + z ) + y 3 ( 1 + z ) ( 1 + x ) + z 3 ( 1 + x ) ( 1 + y ) ≥ 3 4 \frac{x^{3}}{(1+y)(1+z)}+\frac{y^{3}}{(1+z)(1+x)}+\frac{z^{3}}{(1+x)(1+y)} \geq \frac{3}{4}
( 1 + y ) ( 1 + z ) x 3 + ( 1 + z ) ( 1 + x ) y 3 + ( 1 + x ) ( 1 + y ) z 3 ≥ 4 3
x 3 ( 1 + y ) ( 1 + z ) + 1 + y 8 + 1 + z 8 ⩾ 3 4 x , 写成轮换对称 \frac{x^{3}}{(1+y)(1+z)}+\frac{1+y}{8}+\frac{1+z}{8} \geqslant \frac{3}{4} x , \text{写成轮换对称}
( 1 + y ) ( 1 + z ) x 3 + 8 1 + y + 8 1 + z ⩾ 4 3 x , 写成轮换对称
∑ c y c x 3 ( 1 + y ) ( 1 + z ) + 1 4 ∑ c y c ( 1 + x ) ⩾ ∑ c y c 3 x 4 ⇒ ∑ c y c x 3 ( 1 + y ) ( 1 + z ) ≥ 1 4 ∑ c y c ( 2 x − 1 ) = 1 4 ( x + x + y + y + … ) − 3 4 ⩾ 6 4 − 3 4 = 3 4 \begin{gathered}
\sum_{c y c} \frac{x^{3}}{(1+y)(1+z)}+\frac{1}{4} \sum_{c y c}(1+x) \geqslant \sum_{c y c} \frac{3 x}{4} \\
\Rightarrow \sum_{c y c} \frac{x^{3}}{(1+y)(1+z)} \geq \frac{1}{4} \sum_{c y c}(2 x-1)=\frac{1}{4}(x+x+y+y+\ldots)-\frac{3}{4} \\
\geqslant \frac{6}{4}-\frac{3}{4}=\frac{3}{4}
\end{gathered}
c y c ∑ ( 1 + y ) ( 1 + z ) x 3 + 4 1 c y c ∑ ( 1 + x ) ⩾ c y c ∑ 4 3 x ⇒ c y c ∑ ( 1 + y ) ( 1 + z ) x 3 ≥ 4 1 c y c ∑ ( 2 x − 1 ) = 4 1 ( x + x + y + y + … ) − 4 3 ⩾ 4 6 − 4 3 = 4 3
problem3轮换恒等变形
\textbf{problem3轮换恒等变形}
problem3 轮换恒等变形
( a 2 + b 2 + c 2 ) ( a b + b c + c a ) = a b ( a 2 + b 2 ) + b c ( b 2 + c 2 ) + c a ( a 2 + c 2 ) + a b c ( a + b + c ) if a , b , c ⩾ 0 , a + b + c = 2 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ⩾ a b ( a 2 + b 2 ) + b c ( b 2 + c 2 ) + c a ( a 2 + c 2 ) ⩾ 2 ( a 2 b 2 + b 2 c 2 + a 2 c 2 ) \begin{gathered}
\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a)=a b\left(a^{2}+b^{2}\right)+b c\left(b^{2}+c^{2}\right)+c a\left(a^{2}+c^{2}\right)+a b c(a+b+c) \\
\text{if} \ a , b, c \geqslant 0, a+b+c =2 \\
\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a) \geqslant a b\left(a^{2}+b^{2}\right)+b c\left(b^{2}+c^{2}\right)+c a\left(a^{2}+c^{2}\right) \\
\geqslant 2\left(a^{2} b^{2}+b^2 c^{2}+a^{2} c^{2}\right)
\end{gathered}
( a 2 + b 2 + c 2 ) ( a b + b c + c a ) = a b ( a 2 + b 2 ) + b c ( b 2 + c 2 ) + c a ( a 2 + c 2 ) + a b c ( a + b + c ) if a , b , c ⩾ 0 , a + b + c = 2 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ⩾ a b ( a 2 + b 2 ) + b c ( b 2 + c 2 ) + c a ( a 2 + c 2 ) ⩾ 2 ( a 2 b 2 + b 2 c 2 + a 2 c 2 )
a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) = ( a + b + c ) 2 = 4 2 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ⩽ ( a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) 2 ) 2 = 4 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ⩽ 2 ⇒ a 2 b 2 + b 2 c 2 + a 2 c 2 ⩽ 1 \begin{gathered}
a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=(a+b+c)^{2}=4 \\
2\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a) \leqslant\left(\frac{a^{2}+b^{2}+c^{2}+2(a b+b c+c a)}{2}\right)^{2}=4 \\
\begin{gathered}
\left(a^{2}+b^{2}+c^{2}\right)(a b+b c+c a) \leqslant 2 \\
\Rightarrow a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2} \leqslant 1
\end{gathered}
\end{gathered}
a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) = ( a + b + c ) 2 = 4 2 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ⩽ ( 2 a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) ) 2 = 4 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ⩽ 2 ⇒ a 2 b 2 + b 2 c 2 + a 2 c 2 ⩽ 1
problem4不等式中的域分组 \textbf{problem4不等式中的域分组} problem4 不等式中的域分组
a , b , c , d > 0 a,b,c,d>0 a , b , c , d > 0
1 a 2 + a b + 1 b 2 + b c + 1 c 2 + c d + 1 d 2 + d a ⩾ 4 a c + b d \frac{1}{a^{2}+a b}+\frac{1}{b^{2}+b c}+\frac{1}{c^{2}+c d}+\frac{1}{d^{2}+d a} \geqslant \frac{4}{a c+b d}
a 2 + a b 1 + b 2 + b c 1 + c 2 + c d 1 + d 2 + d a 1 ⩾ a c + b d 4
a c + b d a 2 + a b = a 2 + a b + a c + b d a 2 + a b − 1 = a + c a + b + b ( d + a ) a ( a + b ) − 1 L H S = ∑ c y c a + c a + b + ∑ c y c b ( d + a ) a ( a + b ) − 4 \begin{gathered}
\frac{a c+b d}{a^{2}+a b}=\frac{a^{2}+a b+a c+b d}{a^{2}+a b}-1=\frac{a+c}{a+b}+\frac{b(d+a)}{a(a+b)}-1 \\
L H S=\sum_{c y c} \frac{a+c}{a+b}+\sum_{c y c} \frac{b(d+a)}{a(a+b)}-4
\end{gathered}
a 2 + a b a c + b d = a 2 + a b a 2 + a b + a c + b d − 1 = a + b a + c + a ( a + b ) b ( d + a ) − 1 L H S = c y c ∑ a + b a + c + c y c ∑ a ( a + b ) b ( d + a ) − 4
{ a + c a + b , b ( d + a ) a ( a + b ) } , { b + d b + c , c ( a + b ) b ( b + c ) } { c + a c + d , d ( c + b ) c ( c + d ) } , { d + b d + a , a ( d + c ) d ( d + a ) } 用AM-GM不等式消去第二个项, 得到 L H S ⩾ ∑ c y c a + c a + b \begin{gathered}
\left\{\frac{a+c}{a+b}, \frac{b(d+a)}{a(a+b)}\right\}, \quad \left\{\frac{b+d}{b+c}, \frac{c(a+b)}{b(b+c)} \right\} \\
\left\{\frac{c+a}{c+d}, \frac{d(c+b)}{c(c+d)}\right\}, \quad \left\{\frac{d+b}{d+a}, \frac{a(d+c)}{d(d+a)}\right\} \\ \ \\
\text{用AM-GM不等式消去第二个项, 得到 }\\ \ \\
LH S \geqslant \sum_{c y c} \frac{a+c}{a+b}
\end{gathered}
{ a + b a + c , a ( a + b ) b ( d + a ) } , { b + c b + d , b ( b + c ) c ( a + b ) } { c + d c + a , c ( c + d ) d ( c + b ) } , { d + a d + b , d ( d + a ) a ( d + c ) } 用 AM-GM 不等式消去第二个项 , 得到 L H S ⩾ c y c ∑ a + b a + c
∑ c y c a + c a + b = ( a + c ) ( 1 a + b + 1 c + d ) + ( b + d ) ( 1 b + c + 1 d + a ) Schwarz 不等式 1 a + b + 1 c + d ⩾ ( 1 + 1 ) 2 a + b + c + d = 4 a + b + c + d L H S ⩾ 4 ( a + c ) a + b + c + d + 4 ( b + d ) a + b + c + d = 4 \begin{gathered}
\sum_{c y c} \frac{a+c}{a+b}=(a+c)\left(\frac{1}{a+b}+\frac{1}{c+d}\right)+(b+d)\left(\frac{1}{b+c}+\frac{1}{d+a}\right) \\
\text{Schwarz 不等式} \\ \ \\
\frac{1}{a+b}+\frac{1}{c+d} \geqslant \frac{(1+1)^{2}}{a+b+c+d}=\frac{4}{a+b+c+d} \\ \ \\
L H S \geqslant \frac{4(a+c)}{a+b+c+d}+\frac{4(b+d)}{a+b+c+d}=4
\end{gathered}
c y c ∑ a + b a + c = ( a + c ) ( a + b 1 + c + d 1 ) + ( b + d ) ( b + c 1 + d + a 1 ) Schwarz 不等式 a + b 1 + c + d 1 ⩾ a + b + c + d ( 1 + 1 ) 2 = a + b + c + d 4 L H S ⩾ a + b + c + d 4 ( a + c ) + a + b + c + d 4 ( b + d ) = 4
problem5 \textbf{problem5} problem5
a , b , c , d , e ⩾ 0 , a + b + c + d + e = 5 , proof a,b,c,d,e \geqslant 0, a+b+c+d+e = 5, \text{proof} a , b , c , d , e ⩾ 0 , a + b + c + d + e = 5 , proof
a b c + b c d + c d e + d e a + e a b ⩽ 5 abc+bcd+cde+dea+eab \leqslant 5 a b c + b c d + c d e + d e a + e a b ⩽ 5
proof \textbf{proof} proof
a b c + b c d + c d e + d e a + e a b = e ( a + c ) ( b + d ) + b c ( a + d − e ) ⩽ e ( a + b + c + d 2 ) 2 + ( b + c + a + d − e 3 ) 3 = e ( 5 − e ) 2 4 + ( 5 − 2 e ) 2 27 \begin{gathered}
a b c+b c d+c d e+d e a+e a b=e(a+c)(b+d)+b c(a+d-e) \\
\leqslant e\left(\frac{a+b+c+d}{2}\right)^{2}+\left(\frac{b+c+a+d-e}{3}\right)^{3} \\ \ \\
=\frac{e(5-e)^{2}}{4}+\frac{(5-2 e)^{2}}{27}
\end{gathered}
a b c + b c d + c d e + d e a + e a b = e ( a + c ) ( b + d ) + b c ( a + d − e ) ⩽ e ( 2 a + b + c + d ) 2 + ( 3 b + c + a + d − e ) 3 = 4 e ( 5 − e ) 2 + 2 7 ( 5 − 2 e ) 2
f ( x ) = x ( 5 − x ) 2 4 + ( 5 − 2 x ) 2 27 d f ( x ) d x = − 5 36 ( x 2 + 4 x − 5 ) ⇒ x = 1 , d f ( x ) d x = 0 let e = min { a , b , c , d , e } , ⇒ e ⩽ 1 f ( x ) ⩽ f ( 1 ) = 2 ⩽ 5 \begin{gathered}
f(x)=\frac{x(5-x)^{2}}{4}+\frac{(5-2 x)^{2}}{27} \\
\frac{d f(x)}{d x}=-\frac{5}{36}\left(x^{2}+4 x-5\right) \Rightarrow x=1, \frac{d f(x)}{d x}=0 \\ \ \\
\text{let } e = \min\{a,b,c,d,e\}, \Rightarrow e \leqslant 1 \\ \ \\
f(x) \leqslant f(1)=2 \leqslant 5
\end{gathered}
f ( x ) = 4 x ( 5 − x ) 2 + 2 7 ( 5 − 2 x ) 2 d x d f ( x ) = − 3 6 5 ( x 2 + 4 x − 5 ) ⇒ x = 1 , d x d f ( x ) = 0 let e = min { a , b , c , d , e } , ⇒ e ⩽ 1 f ( x ) ⩽ f ( 1 ) = 2 ⩽ 5
problem5 \textbf{problem5} problem5
a , b , c , d > 0 , proof a,b,c,d>0, \text{proof} a , b , c , d > 0 , proof
( 1 a + 1 b + 1 c + 1 d ) 2 ⩾ 1 a 2 + 4 a 2 + b 2 + 9 a 2 + b 2 + c 2 + 16 a 2 + b 2 + c 2 + d 2 \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)^{2} \geqslant \frac{1}{a^{2}}+\frac{4}{a^{2}+b^{2}}+\frac{9}{a^{2}+b^{2}+c^{2}}+\frac{16}{a^{2}+b^{2}+c^{2}+d^{2}}
( a 1 + b 1 + c 1 + d 1 ) 2 ⩾ a 2 1 + a 2 + b 2 4 + a 2 + b 2 + c 2 9 + a 2 + b 2 + c 2 + d 2 1 6
⇔ 1 b 2 + 1 c 2 + 1 d 2 + ∑ s y m 2 a b ⩾ 4 a 2 + b 2 + 9 a 2 + b 2 + c 2 + 16 a 2 + b 2 + c 2 + d 2 \Leftrightarrow \frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}+\sum_{s y m} \frac{2}{a b} \geqslant \frac{4}{a^{2}+b^{2}}+\frac{9}{a^{2}+b^{2}+c^{2}}+\frac{16}{a^{2}+b^{2}+c^{2}+d^{2}}
⇔ b 2 1 + c 2 1 + d 2 1 + s y m ∑ a b 2 ⩾ a 2 + b 2 4 + a 2 + b 2 + c 2 9 + a 2 + b 2 + c 2 + d 2 1 6
AM-GM不等式, 有 2 a b ⩾ 4 a 2 + b 2 2 a c + 2 b c ⩾ ( 2 2 ) 2 a c + b c ⩾ 8 a 2 + b 2 2 + c 2 > 8 a 2 + b 2 + c 2 (Cauchy-Schwarz) 1 b 2 + 1 c 2 ⩾ 4 b 2 + c 2 ⩾ 1 b 2 + c 2 + a 2 d = min { a , b , c , d } 2 a d + 2 b d + 2 c d ⩾ ( 3 2 ) 2 a d + b d + c d ⩾ 18 a d + b d + c d + d 2 ⩾ 18 a 2 + b 2 + c 2 + d 2 > 16 a 2 + b 2 + c 2 + d 2 \begin{gathered}
\text{AM-GM不等式, 有} \\ \ \\
\frac{2}{a b} \geqslant \frac{4}{a^{2}+b^{2}} \\ \ \\
\frac{2}{a c}+\frac{2}{b c} \geqslant \frac{(2 \sqrt{2})^{2}}{a c+b c} \geqslant \frac{8}{\frac{a^{2}+b^{2}}{2}+c^{2}}>\frac{8}{a^{2}+b^{2}+c^{2}} \ \text{(Cauchy-Schwarz)}\\ \ \\
\frac{1}{b^{2}}+\frac{1}{c^{2}} \geqslant \frac{4}{b^{2}+c^{2}} \geqslant \frac{1}{b^{2}+c^{2}+a^{2}} \\ \ \\
d=\min \{a, b, c, d\} \\ \ \\
\frac{2}{a d}+\frac{2}{b d}+\frac{2}{c d} \geqslant \frac{(3 \sqrt{2})^{2}}{a d+b d+c d} \\ \ \\
\geqslant \frac{18}{a d+b d+c d+d^{2}} \geqslant \frac{18}{a^{2}+b^{2}+c^{2}+d^{2}}>\frac{16}{a^{2}+b^{2}+c^{2}+d^{2}}
\end{gathered}
AM-GM 不等式 , 有 a b 2 ⩾ a 2 + b 2 4 a c 2 + b c 2 ⩾ a c + b c ( 2 2 ) 2 ⩾ 2 a 2 + b 2 + c 2 8 > a 2 + b 2 + c 2 8 (Cauchy-Schwarz) b 2 1 + c 2 1 ⩾ b 2 + c 2 4 ⩾ b 2 + c 2 + a 2 1 d = min { a , b , c , d } a d 2 + b d 2 + c d 2 ⩾ a d + b d + c d ( 3 2 ) 2 ⩾ a d + b d + c d + d 2 1 8 ⩾ a 2 + b 2 + c 2 + d 2 1 8 > a 2 + b 2 + c 2 + d 2 1 6
problem6 ask min M \textbf{problem6} \ \text{ask} \min {M} problem6 ask min M
∣ a b ( a 2 − b 2 ) + b c ( b 2 − c 2 ) + c a ( c 2 − a 2 ) ∣ ⩽ M ( a 2 + b 2 + c 2 ) 2 \left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leqslant M\left(a^{2}+b^{2}+c^{2}\right)^{2}
∣ ∣ ∣ a b ( a 2 − b 2 ) + b c ( b 2 − c 2 ) + c a ( c 2 − a 2 ) ∣ ∣ ∣ ⩽ M ( a 2 + b 2 + c 2 ) 2
L H S = a b ( a 2 − b 2 + c 2 − c 2 ) + b c ( b 2 − c 2 ) + c a ( c 2 − a 2 ) = b ( b 2 − c 2 ) ( c − a ) + a ( c − a ) ( c + a ) ( c − b ) = − ( a − b ) ( b − c ) ( c − a ) ( a + b + c ) let x = a − b , y = b − c , z = c − a , s = a + b + c \begin{gathered}
L H S=a b\left(a^{2}-b^{2}+c^{2}-c^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right) \\ \ \\
=b\left(b^{2}-c^{2}\right)(c-a)+a(c-a)(c+a)(c-b) \\ \ \\
=-(a-b)(b-c)(c-a)(a+b+c) \\ \ \\
\text{let } x=a-b, y = b-c, z=c-a, s=a+b+c
\end{gathered}
L H S = a b ( a 2 − b 2 + c 2 − c 2 ) + b c ( b 2 − c 2 ) + c a ( c 2 − a 2 ) = b ( b 2 − c 2 ) ( c − a ) + a ( c − a ) ( c + a ) ( c − b ) = − ( a − b ) ( b − c ) ( c − a ) ( a + b + c ) let x = a − b , y = b − c , z = c − a , s = a + b + c
⇔ 9 ∣ s x y z ∣ ⩽ M ( s 2 + x 2 + y 2 + z 2 ) 2 , x + y + z = 0 \begin{gathered}
\Leftrightarrow 9|sxyz| \leqslant M\left(s^{2}+x^{2}+y^{2}+z^{2}\right)^{2}, \quad x +y+z =0 \\ \ \\
\end{gathered}
⇔ 9 ∣ s x y z ∣ ⩽ M ( s 2 + x 2 + y 2 + z 2 ) 2 , x + y + z = 0
i) \textbf{i)} i)
x 2 + y 2 + z 2 = x 2 + y 2 + ( x + y ) 2 = 2 ( ( x + y ) 2 − x y ) ⩾ 2 ( ( x + y ) 2 − ( x + y ) 2 4 ) = 3 2 ( x + y ) 2 ∣ s x y z ∣ = ∣ s x y ( x + y ) ∣ ⩽ ∣ s ∣ ( x + y ) 3 4 \begin{gathered}
x^{2}+y^{2}+z^{2}=x^{2}+y^{2}+(x+y)^{2}=2\left((x+y)^{2}-x y\right) \\ \ \\
\geqslant 2\left((x+y)^{2}-\frac{(x+y)^{2}}{4}\right)=\frac{3}{2}(x+y)^{2} \\ \ \\
|s x y z|=|s x y(x+y)| \leqslant |s| \frac{(x+y)^{3}}{4}
\end{gathered}
x 2 + y 2 + z 2 = x 2 + y 2 + ( x + y ) 2 = 2 ( ( x + y ) 2 − x y ) ⩾ 2 ( ( x + y ) 2 − 4 ( x + y ) 2 ) = 2 3 ( x + y ) 2 ∣ s x y z ∣ = ∣ s x y ( x + y ) ∣ ⩽ ∣ s ∣ 4 ( x + y ) 3
ii) \textbf{ii)} ii)
let t = x + y ⇔ ask ∣ s ∣ t 3 ⩽ ? ( s 2 + 3 2 t 2 ) 2 ⇔ ask s 2 t 6 ⩽ ? ( 2 s 2 + 3 t 2 ) 4 4 we have 2 s 2 t 6 = 2 s 2 ⋅ t 2 ⋅ t 2 ⋅ t 2 ⩽ ( 2 s 2 + 3 t 2 4 ) 4 4 ⋅ 2 ∣ s ∣ t 3 ⩽ ( 2 s 2 + 3 t 2 ) 2 4 ∣ s x y z ∣ ⩽ 1 16 2 ( s 2 + x 2 + y 2 + z 2 ) 2 , M = 9 16 2 { 2 ( a + b + c ) = c − a a + b + c = 3 c − a = 3 2 a − b = b − c ⇒ { b = 1 c − a = 3 2 a + c = 2 ( a , b , c ) = ( 1 − 3 2 , 1 , 1 + 3 2 ) \begin{gathered}
\text{let } t = x+y \\ \ \\
\Leftrightarrow \text{ask} \quad |s| t^{3} \leqslant ?\left(s^{2}+\frac{3}{2} t^{2}\right)^{2} \\ \ \\
\Leftrightarrow \text{ask} \quad s^{2} t^{6} \leqslant \ ? \frac{\left(2 s^{2}+3 t^{2}\right)^{4}}{4} \\ \ \\
\text{we have} \quad 2 s^{2} t^{6}=2 s^{2} \cdot t^{2} \cdot t^{2} \cdot t^{2} \leqslant\left(\frac{2 s^{2}+3 t^{2}}{4}\right)^{4} \\ \ \\
4 \cdot \sqrt{2}|s| t^{3} \leqslant \frac{\left(2 s^{2}+3 t^{2}\right)^{2}}{4} \\ \ \\
|s x y z| \leqslant \frac{1}{16 \sqrt{2}}\left(s^{2}+x^{2}+y^{2}+z^{2}\right)^{2}, M=\frac{9}{16 \sqrt{2}} \\ \ \\
\left\{\begin{gathered}
\sqrt{2}(a+b+c)=c-a \\
a+b+c=3 \\
c-a=3 \sqrt{2} \\
a-b=b-c
\end{gathered}\right. \Rightarrow
\left\{\begin{gathered}
b=1 \\
c-a=3 \sqrt{2} \\
a+c=2
\end{gathered}\right. \\ \ \\
(a, b, c)=\left(1-\frac{3}{\sqrt{2}}, 1,1+\frac{3}{\sqrt{2}}\right)
\end{gathered}
let t = x + y ⇔ ask ∣ s ∣ t 3 ⩽ ? ( s 2 + 2 3 t 2 ) 2 ⇔ ask s 2 t 6 ⩽ ? 4 ( 2 s 2 + 3 t 2 ) 4 we have 2 s 2 t 6 = 2 s 2 ⋅ t 2 ⋅ t 2 ⋅ t 2 ⩽ ( 4 2 s 2 + 3 t 2 ) 4 4 ⋅ 2 ∣ s ∣ t 3 ⩽ 4 ( 2 s 2 + 3 t 2 ) 2 ∣ s x y z ∣ ⩽ 1 6 2 1 ( s 2 + x 2 + y 2 + z 2 ) 2 , M = 1 6 2 9 ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ 2 ( a + b + c ) = c − a a + b + c = 3 c − a = 3 2 a − b = b − c ⇒ ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ b = 1 c − a = 3 2 a + c = 2 ( a , b , c ) = ( 1 − 2 3 , 1 , 1 + 2 3 )
Cauchy求反技术
已知 a + b + c + d = 4 a+b+c+d = 4 a + b + c + d = 4 , 证明
a 1 + b 2 c + b 1 + c 2 d + c 1 + d 2 a + d 1 + a 2 b ≥ 2 \frac{a}{1+b^{2} c}+\frac{b}{1+c^{2} d}+\frac{c}{1+d^{2} a}+\frac{d}{1+a^{2} b} \geq 2
1 + b 2 c a + 1 + c 2 d b + 1 + d 2 a c + 1 + a 2 b d ≥ 2
a 1 + b 2 c = a − a b 2 c 1 + b 2 c ⩾ a − 2 b 2 c 2 b c ⩾ a − b ( a + a c ) 4 \begin{gathered}
\frac{a}{1+b^{2} c}=a-\frac{a b^{2} c}{1+b^{2} c} \geqslant a-\frac{2 b^{2} c}{2 b \sqrt{c}} \geqslant a-\frac{b(a+a c)}{4}\\ \ \\
\end{gathered}
1 + b 2 c a = a − 1 + b 2 c a b 2 c ⩾ a − 2 b c 2 b 2 c ⩾ a − 4 b ( a + a c )
2 ∑ c y c a b = ( ∑ c y c a ) 2 − ∑ c y c ( a 2 ) ⇒ ⇒ ( ∑ c y c a ) 2 = 2 ∑ c y c a b + ∑ c y c a 2 ⩾ 4 ∑ c y c a b ⇒ ∑ c y c a b ⩽ 1 4 ( ∑ c y c a ) 2 ( ∑ c y c 4 a ) 3 = 4 ∑ c y c 4 a 3 + ( 3 1 ) ( 4 1 ) ∑ c y c 4 a b c 16 ∑ c y c a b c ⩽ ( ∑ c y c a ) 3 \begin{gathered}
2 \sum_{c y c} a b=\left(\sum_{c y c} a\right)^{2}-\sum_{c y c}\left(a^{2}\right) \Rightarrow \\ \ \\
\Rightarrow \quad\left(\sum_{cyc} a\right)^{2}=2 \sum_{c y c} a b+\sum_{c y c} a^{2} \geqslant 4 \sum_{cyc}ab \\ \ \\
\Rightarrow \sum_{c y c} a b \leqslant \frac{1}{4}\left(\sum_{c y c} a\right)^{2} \\ \ \\
\left(\sum_{c yc4} a\right)^{3}=4 \sum_{c y c 4} a^{3}+\left(\begin{gathered}
3 \\
1
\end{gathered}\right)\left(\begin{gathered}
4 \\
1
\end{gathered}\right) \sum_{c y c 4} a b c \\ \ \\
16 \sum_{c y c} a b c \leqslant(\sum_{cyc} a)^{3}
\end{gathered}
2 c y c ∑ a b = ( c y c ∑ a ) 2 − c y c ∑ ( a 2 ) ⇒ ⇒ ( c y c ∑ a ) 2 = 2 c y c ∑ a b + c y c ∑ a 2 ⩾ 4 c y c ∑ a b ⇒ c y c ∑ a b ⩽ 4 1 ( c y c ∑ a ) 2 ( c y c 4 ∑ a ) 3 = 4 c y c 4 ∑ a 3 + ( 3 1 ) ( 4 1 ) c y c 4 ∑ a b c 1 6 c y c ∑ a b c ⩽ ( c y c ∑ a ) 3
AM-GM and Chebyshev \textbf{AM-GM} \ \textbf{and} \ \textbf{Chebyshev} AM-GM and Chebyshev
Chebyshev \textbf{Chebyshev} Chebyshev
a 1 b 1 + a 2 b 1 + … + a n b n ⩾ 1 n ( a 1 + a 2 + ⋯ + a n ) ( b 1 + b 2 + … + b n ) a_{1} b_{1}+a_{2} b_{1}+\ldots+a_{n} b_{n} \geqslant \frac{1}{n}\left(a_{1}+a_{2}+\dots+a_{n}\right)\left(b_{1}+b_{2}+\ldots+b_{n}\right)
a 1 b 1 + a 2 b 1 + … + a n b n ⩾ n 1 ( a 1 + a 2 + ⋯ + a n ) ( b 1 + b 2 + … + b n )
a + b + c = 3 , proof a+b+c=3, \quad \text{proof} a + b + c = 3 , proof
∑ c y c ( a b ) 2 3 ⩽ 3 ( a + b + c ) 2 ⩾ 1 9 ( a + b + c ) ( 1 + 1 + 1 ) = 1 3 ( a + b + c ) ( a + b + c ) 2 = ∑ c y c a 2 + 2 ∑ c y c a b ⩾ 3 ∑ c y c a b ⇒ ( ∑ c y c a ) 2 = 2 3 ( ∑ c y c a ) 2 + 1 3 ( ∑ c y c a ) 2 ⩾ 2 ∑ c y c a + ∑ c y c a b = ∑ c y c ( a + a + a b ) = ∑ c y c ( a + b + a b ) ⩾ 3 ∑ c y c ( a b ) 2 / 3 \begin{gathered}
\sum_{c y c}(a b)^{\frac{2}{3}} \leqslant 3 \\ \ \\
(a+b+c)^{2} \geqslant \frac{1}{9}(a+b+c)(1+1+1)=\frac{1}{3}(a+b+c) \\ \ \\
(a+b+c)^{2}=\sum_{c y c} a^{2}+2 \sum_{c y c} a b \geqslant 3 \sum_{c y c} a b \\ \ \\
\Rightarrow \left(\sum_{c yc} a\right)^{2}=\frac{2}{3}\left(\sum_{c y c} a\right)^{2}+\frac{1}{3}\left(\sum_{c y c} a\right)^{2} \geqslant 2 \sum_{c yc} a+\sum_{c y c} a b \\ \ \\
=\sum_{c y c}(a+a+a b)=\sum_{c y c}(a+b+a b) \geqslant 3 \sum_{c y c}(a b)^{2 / 3}
\end{gathered}
c y c ∑ ( a b ) 3 2 ⩽ 3 ( a + b + c ) 2 ⩾ 9 1 ( a + b + c ) ( 1 + 1 + 1 ) = 3 1 ( a + b + c ) ( a + b + c ) 2 = c y c ∑ a 2 + 2 c y c ∑ a b ⩾ 3 c y c ∑ a b ⇒ ( c y c ∑ a ) 2 = 3 2 ( c y c ∑ a ) 2 + 3 1 ( c y c ∑ a ) 2 ⩾ 2 c y c ∑ a + c y c ∑ a b = c y c ∑ ( a + a + a b ) = c y c ∑ ( a + b + a b ) ⩾ 3 c y c ∑ ( a b ) 2 / 3
Rearrangement inequality \textbf{Rearrangement} \ \textbf{inequality} Rearrangement inequality
a + b + c = 3 , ∑ c y c a ⩾ ∑ c y c a b ∑ c y c a = 1 3 ⋅ ( ∑ c y c a ) ( ∑ c y c a ) = 1 3 ( ∑ c y c a ) 2 a 2 + b 2 + c 2 ⩾ a b + b c + c a ∑ c y c a 2 ⩾ ∑ c y c a b ∑ c y c a ⩾ 1 3 ⋅ 3 ∑ c y c a b = ∑ c y c a b \begin{gathered}
a+b+c =3, \quad \sum_{c y c} a \geqslant \sum_{c y c} a b \\ \ \\
\sum_{c y c} a=\frac{1}{3} \cdot\left(\sum_{c y c} a\right)\left(\sum_{c y c} a\right)=\frac{1}{3}\left(\sum_{c y c} a\right)^{2} \\ \ \\
\begin{gathered}
&a^{2}+b^{2}+c^{2} \geqslant a b+b c+c a\\
&\sum_{c y c} a^{2} \geqslant \sum_{c y c} a b
\end{gathered} \\
\sum_{c y c} a \geqslant \frac{1}{3} \cdot 3 \sum_{c y c} a b=\sum_{c y c} a b
\end{gathered}
a + b + c = 3 , c y c ∑ a ⩾ c y c ∑ a b c y c ∑ a = 3 1 ⋅ ( c y c ∑ a ) ( c y c ∑ a ) = 3 1 ( c y c ∑ a ) 2 a 2 + b 2 + c 2 ⩾ a b + b c + c a c y c ∑ a 2 ⩾ c y c ∑ a b c y c ∑ a ⩾ 3 1 ⋅ 3 c y c ∑ a b = c y c ∑ a b
problem \textbf{problem} problem
a + b + c + d = 4 , proof a+b+c+d=4, \ \text{proof} a + b + c + d = 4 , proof
∑ c y c a b − ∑ c y c a b 2 c ⇔ a b + b c + c d + d a ⩽ a b 2 c + b c 2 d + c d 2 a + d a 2 b L H S = 1 4 ( b + c + d + a ) ( a b + b c + c d + d a ) ⩽ a b 2 + b c 2 + c d 2 + d a 2 = 1 4 ( c + d + a + b ) ( a b 2 + b c 2 + c d 2 + d a 2 ) ⩽ a b 2 c + b c 2 d + c d 2 a + d a 2 b \begin{gathered}
\sum_{c y c} a b-\sum_{c y c} a b^{2} c \\ \ \\
\Leftrightarrow a b+b c+c d+d a \leqslant a b^{2} c+b c^{2} d+c d^{2} a+d a^{2} b \\ \ \\
L H S=\frac{1}{4}(b+c+d+a)(a b+b c+c d+d a) \\ \ \\
\leqslant a b^{2}+b c^{2}+c d^{2}+d a^{2}=\frac{1}{4}(c+d+a+b)\left(a b^{2}+b c^{2}+c d^{2}+d a^{2}\right) \\ \ \\
\leqslant a b^{2} c+b c^{2} d+c d^{2} a+d a^{2} b
\end{gathered}
c y c ∑ a b − c y c ∑ a b 2 c ⇔ a b + b c + c d + d a ⩽ a b 2 c + b c 2 d + c d 2 a + d a 2 b L H S = 4 1 ( b + c + d + a ) ( a b + b c + c d + d a ) ⩽ a b 2 + b c 2 + c d 2 + d a 2 = 4 1 ( c + d + a + b ) ( a b 2 + b c 2 + c d 2 + d a 2 ) ⩽ a b 2 c + b c 2 d + c d 2 a + d a 2 b
Cauchy求反技术的技巧 \textbf{Cauchy求反技术的技巧} Cauchy 求反技术的技巧
a , b , c > 0 , a 2 + b 2 + c 2 = 3 proof 1 a 3 + 2 + 1 b 3 + 2 + 1 c 3 + 2 ⩾ 1 1 a 3 + 2 = 1 2 − a 3 2 ( a 3 + 2 ) \begin{gathered}
a, b, c>0, \quad a^{2}+b^{2}+c^{2}=3 \ \text{proof} \\ \ \\
\frac{1}{a^{3}+2}+\frac{1}{b^{3}+2}+\frac{1}{c^{3}+2} \geqslant 1 \\ \ \\
\frac{1}{a^{3}+2}=\frac{1}{2}-\frac{a^{3}}{2\left(a^{3}+2\right)}
\end{gathered}
a , b , c > 0 , a 2 + b 2 + c 2 = 3 proof a 3 + 2 1 + b 3 + 2 1 + c 3 + 2 1 ⩾ 1 a 3 + 2 1 = 2 1 − 2 ( a 3 + 2 ) a 3
连分数
连分数相关定义
表示 \textbf{表示} 表示
[ a 0 , a 1 ] = a 0 + 1 a 1 [ a 0 , a 1 , … , a n − 1 , a n ] = [ a 0 , a 1 , … , a n − 2 , a n − 1 + 1 a n ] \begin{gathered}
\left[a_{0}, a_{1}\right]=a_{0}+\frac{1}{a_{1}} \\ \ \\
\left[a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}\right]=\left[a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}+\frac{1}{a_{n}}\right]
\end{gathered}
[ a 0 , a 1 ] = a 0 + a 1 1 [ a 0 , a 1 , … , a n − 1 , a n ] = [ a 0 , a 1 , … , a n − 2 , a n − 1 + a n 1 ]
p 0 = a 0 , p 1 = a 1 a 0 + 1 , p n = a n p n − 1 + p n − 2 ( 2 ⩽ n ⩽ N ) q 0 = 1 , q 1 = a 1 , q n = a n q n − 1 + q n − 2 ( 2 ⩽ n ⩽ N ) [ a 0 , a 1 , … . . , a n ] = p n q n \begin{gathered}
p_{0}=a_{0}, \quad p_{1}=a_{1} a_{0}+1, \quad p_{n}=a_{n} p_{n-1}+p_{n-2} \quad(2 \leqslant n \leqslant N) \\
q_{0}=1, \quad q_{1}=a_{1}, \quad q_{n}=a_{n} q_{n-1}+q_{n-2} \quad \quad \quad(2 \leqslant n \leqslant N) \\ \ \\
\left[a_{0}, a_{1}, \ldots . ., a_{n}\right]=\frac{p_{n}}{q_{n}}
\end{gathered}
p 0 = a 0 , p 1 = a 1 a 0 + 1 , p n = a n p n − 1 + p n − 2 ( 2 ⩽ n ⩽ N ) q 0 = 1 , q 1 = a 1 , q n = a n q n − 1 + q n − 2 ( 2 ⩽ n ⩽ N ) [ a 0 , a 1 , … . . , a n ] = q n p n
proof \textbf{proof} proof
[ a 0 , a 1 , … , a m − 1 , a m ] = p m q m = a m p m − 1 + p m − 2 a m q m − 1 + q m − 2 [ a 0 , a 1 , … , a m − 1 , a m , a m + 1 ] = [ a 0 , a 1 , … . , a m − 1 , a m + 1 a m + 1 ] = ( a m + 1 a m + 1 ) p m − 1 + p m − 2 ( a m + 1 a m + 1 ) q m − 1 + q m − 2 = a m + 1 ( a m p m − 1 + p m − 2 ) + p m − 1 a m + 1 ( a m q m − 1 + q m − 2 ) + q m − 1 = p m + 1 q m + 1 \begin{gathered}
\left[a_{0}, a_{1}, \ldots, a_{m-1}, a_{m}\right]=\frac{p_{m}}{q_{m}}=\frac{a_{m} p_{m-1}+p_{m-2}}{a_{m} q_{m-1}+q_{m-2}} \\ \ \\
\left[a_{0}, a_{1}, \ldots, a_{m-1}, a_{m}, a_{m+1}\right]=\left[a_{0}, a_{1}, \ldots ., a_{m-1}, a_{m}+\frac{1}{a_{m+1}}\right] \\ \ \\
=\frac{\left(a_{m}+\frac{1}{a_{m+1}}\right) p_{m-1}+p_{m-2}}{\left(a_{m}+\frac{1}{a_{m+1}}\right) q_{m-1}+q_{m-2}}=\frac{a_{m+1}\left(a_{m} p_{m-1}+p_{m-2}\right)+p_{m-1}}{a_{m+1}\left(a_{m} q_{m-1}+q_{m-2}\right)+q_{m-1}} \\ \ \\
= \frac{p_{m+1}}{q_{m+1}}
\end{gathered}
[ a 0 , a 1 , … , a m − 1 , a m ] = q m p m = a m q m − 1 + q m − 2 a m p m − 1 + p m − 2 [ a 0 , a 1 , … , a m − 1 , a m , a m + 1 ] = [ a 0 , a 1 , … . , a m − 1 , a m + a m + 1 1 ] = ( a m + a m + 1 1 ) q m − 1 + q m − 2 ( a m + a m + 1 1 ) p m − 1 + p m − 2 = a m + 1 ( a m q m − 1 + q m − 2 ) + q m − 1 a m + 1 ( a m p m − 1 + p m − 2 ) + p m − 1 = q m + 1 p m + 1
lemma1 \textbf{lemma1} lemma1
p n q n = a n p n − 1 + p n − 2 a n q n − 1 + q n − 2 \frac{p_{n}}{q_{n}}=\frac{a_{n} p_{n-1}+p_{n-2}}{a_{n} q_{n-1}+q_{n-2}}
q n p n = a n q n − 1 + q n − 2 a n p n − 1 + p n − 2
构造递推式如下
p n q n − 1 − p n − 1 q n = ( a n p n − 1 + p n − 2 ) q n − 1 − p n − 1 ( a n q n − 1 + q n − 2 ) = ( − 1 ) 1 ( p n − 1 q n − 2 − p n − 2 q n − 1 ) = ( − 1 ) n − 1 ( p 1 q 0 − p 0 q 1 ) = ( − 1 ) n − 1 \begin{gathered}
p_{n} q_{n-1}-p_{n-1} q_{n}=\left(a_{n} p_{n-1}+p_{n-2}\right) q_{n-1}-p_{n-1}\left(a_{n} q_{n-1}+q_{n-2}\right) \\ \ \\
=(-1)^{1}\left(p_{n-1} q_{n-2}-p_{n-2} q_{n-1}\right)=(-1)^{n-1}\left(p_1q_{0}-p_{0} q_{1}\right)=(-1)^{n-1}
\end{gathered}
p n q n − 1 − p n − 1 q n = ( a n p n − 1 + p n − 2 ) q n − 1 − p n − 1 ( a n q n − 1 + q n − 2 ) = ( − 1 ) 1 ( p n − 1 q n − 2 − p n − 2 q n − 1 ) = ( − 1 ) n − 1 ( p 1 q 0 − p 0 q 1 ) = ( − 1 ) n − 1
还有
p n q n − 2 − p n − 2 q n = ( a n p n − 1 + p n − 2 ) q n − 2 − p n − 2 ( a n q n − 1 + q n − 2 ) = a n ( p n − 1 q n − 2 − p n − 2 q n − 1 ) = ( − 1 ) n − 2 ⋅ a n = ( − 1 ) n a n \begin{gathered}
p_{n} q_{n-2}-p_{n-2} q_{n}=\left(a_{n} p_{n-1}+p_{n-2}\right) q_{n-2}-p_{n-2}\left(a_{n} q_{n-1}+q_{n-2}\right) \\ \ \\
=a_{n}\left(p_{n-1} q_{n-2}-p_{n-2} q_{n-1}\right)=(-1)^{n-2} \cdot a_{n}=(-1)^{n} a_{n}
\end{gathered}
p n q n − 2 − p n − 2 q n = ( a n p n − 1 + p n − 2 ) q n − 2 − p n − 2 ( a n q n − 1 + q n − 2 ) = a n ( p n − 1 q n − 2 − p n − 2 q n − 1 ) = ( − 1 ) n − 2 ⋅ a n = ( − 1 ) n a n
p n q n − 1 − p n − 1 q n = ( − 1 ) n − 1 p n q n − 2 − p n − 2 q n = ( − 1 ) n a n p n q n − p n − 1 q n − 1 = ( − 1 ) n − 1 q n − 1 q n p n q n − p n − 2 q n − 2 = ( − 1 ) n a n q n − 2 q n \begin{gathered}
p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1} \\
\left.p_{n} q_{n-2}-p_{n-2} q_{n}=(-1\right)^{n} a_{n} \\ \ \\
\frac{p_{n}}{q_{n}}-\frac{p_{n-1}}{q_{n-1}}=\frac{(-1)^{n-1}}{q_{n-1} q_{n}} \\ \ \\
\frac{p_{n}}{q_{n}}-\frac{p_{n-2}}{q_{n-2}}=\frac{(-1)^{n} a_{n}}{q_{n-2} q_{n}}
\end{gathered}
p n q n − 1 − p n − 1 q n = ( − 1 ) n − 1 p n q n − 2 − p n − 2 q n = ( − 1 ) n a n q n p n − q n − 1 p n − 1 = q n − 1 q n ( − 1 ) n − 1 q n p n − q n − 2 p n − 2 = q n − 2 q n ( − 1 ) n a n
由此可以知道分奇偶项, 得到的单调性
lemma2 \textbf{lemma2} lemma2
if n > 3 , q n ⩾ n \text{if} \quad n > 3, \quad q_n \geqslant n if n > 3 , q n ⩾ n
q 0 = 1 , q 1 = a 1 ⩾ 1 q n = a n q n − 1 + q n − 2 ⩾ q n − 1 + 1 = n − 1 + 1 = n \begin{gathered}
q_{0}=1, \quad q_{1}=a_{1} \geqslant 1 \\
q_{n}=a_{n} q_{n-1}+q_{n-2} \geqslant q_{n-1}+1=n-1+1=n
\end{gathered}
q 0 = 1 , q 1 = a 1 ⩾ 1 q n = a n q n − 1 + q n − 2 ⩾ q n − 1 + 1 = n − 1 + 1 = n
根据数学归纳法, 证毕
theorem1 \textbf{theorem1} theorem1
x 可以用一个奇数个渐进分数的连分数表示出来 x\ \text{可以用一个奇数个渐进分数的连分数表示出来} x 可以用一个奇数个渐进分数的连分数表示出来
那么也一定能用偶数个渐进分数的连分数表示 \text{那么也一定能用偶数个渐进分数的连分数表示} 那么也一定能用偶数个渐进分数的连分数表示
[ a 0 , a 1 , … a n ] = [ a 0 , a 1 , … a n − 1 , 1 ] , a n ⩾ 2 if a n = 1 , [ a 0 , a 1 , … , a n − 1 , 1 ] = [ a 0 , a 1 , … , a n − 2 , a n − 1 + 1 ] \begin{gathered}
\left[a_{0}, a_{1}, \dots a_{n}\right]=\left[a_{0}, a_{1}, \dots a_{n}-1,1\right], \quad a_n \geqslant 2 \\ \ \\
\text{if} \quad a_n = 1, \left[a_{0}, a_{1}, \ldots, a_{n-1}, 1\right]=\left[a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}+1\right]
\end{gathered}
[ a 0 , a 1 , … a n ] = [ a 0 , a 1 , … a n − 1 , 1 ] , a n ⩾ 2 if a n = 1 , [ a 0 , a 1 , … , a n − 1 , 1 ] = [ a 0 , a 1 , … , a n − 2 , a n − 1 + 1 ]
theorem2 \textbf{theorem2} theorem2
连分数的第 n n n 个完全商
a n ′ = [ a n , a n + 1 , … , a N ] ( 0 ⩽ n ⩽ N ) a_{n}^{\prime}=\left[a_{n}, a_{n+1}, \ldots, a_{N}\right] \quad(0 \leqslant n \leqslant N) a n ′ = [ a n , a n + 1 , … , a N ] ( 0 ⩽ n ⩽ N )
x = a 0 ′ , x = a 0 + 1 a 1 ′ = a 0 a 1 ′ + 1 a 1 ′ [ a n , a 1 , … , a N ] = [ a 0 , a 1 , … a n − 1 , [ a n , a n + 1 , … , a N ] ] = [ a n , a n + 1 … , a n ] p n − 1 + p n − 2 [ a n , a n + 1 … , a n ] q n − 1 + q n − 2 x = a n ′ p n − 1 + p n − 2 a n ′ q n − 1 + q n − 2 \begin{gathered}
x=a_{0}^{\prime}, \quad x=a_{0}+\frac{1}{a_{1}^{\prime}}=\frac{a_{0} a_{1}^{\prime}+1}{a_{1}^{\prime}} \\ \ \\
\left[a_{n}, a_{1}, \ldots, a_{N}\right]=\left[a_{0}, a_{1}, \ldots a_{n-1},\left[a_{n}, a_{n+1}, \dots, a_{N}\right]\right] \\ \ \\
=\frac{\left[a_{n}, a_{n+1} \ldots, a_{n}\right] p_{n-1}+p_{n-2}}{\left[a_{n}, a_{n+1} \dots, a_{n}\right] q_{n-1}+q_{n-2}} \\ \ \\
x=\frac{a_{n}' p_{n-1}+p_{n-2}}{a_{n}' q_{n-1}+q_{n-2}}
\end{gathered}
x = a 0 ′ , x = a 0 + a 1 ′ 1 = a 1 ′ a 0 a 1 ′ + 1 [ a n , a 1 , … , a N ] = [ a 0 , a 1 , … a n − 1 , [ a n , a n + 1 , … , a N ] ] = [ a n , a n + 1 … , a n ] q n − 1 + q n − 2 [ a n , a n + 1 … , a n ] p n − 1 + p n − 2 x = a n ′ q n − 1 + q n − 2 a n ′ p n − 1 + p n − 2
theorem3 \textbf{theorem3} theorem3
除了 a N = 1 , 有 a N − 1 = [ a N − 1 ′ ] − 1 \text{除了} \ a_N = 1, \textbf{有} a_{N-1} = [a_{N-1}']-1 除了 a N = 1 , 有 a N − 1 = [ a N − 1 ′ ] − 1
其他情况, a n = [ a n ′ ] \text{其他情况, }a_n = [a_n'] 其他情况 , a n = [ a n ′ ]
注意到, a n ′ = a n + 1 a n + 1 ′ ( 0 ⩽ n ⩽ N − 1 ) \text{注意到, }a_{n}^{\prime}=a_{n}+\frac{1}{a_{n+1}'} \quad(0 \leqslant n \leqslant N-1)
注意到 , a n ′ = a n + a n + 1 ′ 1 ( 0 ⩽ n ⩽ N − 1 )
i) N = 0 , a 0 = a 0 ′ = [ a 0 ′ ] ii) N > 0 , n = N − 1 , a n + 1 ′ = 1 , a N = 1 , 我们有 a N − 1 ′ = a N − 1 + 1 a N ′ = a N − 1 + 1 > 1 from n + 1 down to n , a n + 1 ′ > 1 ( 0 ⩽ n ⩽ N − 1 ) a n < a n ′ < a n + 1 ( 0 ⩽ n ⩽ N − 1 ) a n = [ a n ′ ] ( 0 ⩽ n ≤ N − 1 ) \begin{gathered}
\textbf{i)}\quad N = 0, a_0 = a_0'=[a_0'] \\ \ \\
\textbf{ii)}\quad N > 0, \ n = N-1, a_{n+1}^{\prime}=1, a_{N}=1, \text{我们有} \\ \ \\
a_{N-1}^{\prime}=a_{N-1}+\frac{1}{a_{N}^{\prime}}=a_{N-1}+1>1 \\ \ \\
\text{from } \ n + 1 \ \text{down to} \ n, a_{n+1}^{\prime}>1 \quad(0 \leqslant n \leqslant N-1) \\ \ \\
a_{n}<a_{n}^{\prime}<a_{n}+1 \quad(0 \leqslant n \leqslant N-1) \\ \ \\
a_{n}=\left[a_{n}^{\prime}\right] \quad(0 \leqslant n \leq N-1)
\end{gathered}
i) N = 0 , a 0 = a 0 ′ = [ a 0 ′ ] ii) N > 0 , n = N − 1 , a n + 1 ′ = 1 , a N = 1 , 我们有 a N − 1 ′ = a N − 1 + a N ′ 1 = a N − 1 + 1 > 1 from n + 1 down to n , a n + 1 ′ > 1 ( 0 ⩽ n ⩽ N − 1 ) a n < a n ′ < a n + 1 ( 0 ⩽ n ⩽ N − 1 ) a n = [ a n ′ ] ( 0 ⩽ n ≤ N − 1 )
theorem4 连分数唯一展开 \textbf{theorem4} \ \textbf{连分数唯一展开} theorem4 连分数唯一展开
如果两个简单连分数
[ a 0 , a 1 , … , a n − 1 , a n ′ ] , [ b 0 , b 1 , … , b n − 1 , b n ′ ] 有同样的值 x [a_0, a_1, \ldots, a_{n-1}, a_n^{\prime}], [b_0, b_1, \ldots, b_{n-1}, b_n^{\prime}] \text{有同样的值 } x [ a 0 , a 1 , … , a n − 1 , a n ′ ] , [ b 0 , b 1 , … , b n − 1 , b n ′ ] 有同样的值 x
a N > 1 , b M > 1 , M = N 并且这两个连分数完全相同 a_N > 1, b_M > 1, M=N \ \text{并且这两个连分数完全相同} a N > 1 , b M > 1 , M = N 并且这两个连分数完全相同
i) n = m 根据 theorem3 , a 0 = [ x ] = b 0 , 那么 x = [ a 0 , a 1 , … , a n − 1 , a n ′ ] = [ a 0 , a 1 , … , a n − 1 , b n ′ ] if n = 1 , a 0 + 1 a 1 ′ = a 0 + 1 b 1 ′ ⇒ a 1 ′ = b 1 ′ ⇒ a 1 = b 1 a n ′ p n − 1 + p n − 2 a n ′ q n − 1 + q n − 2 = b n ′ p n − 1 + p n − 2 b n ′ q n − 1 + q n − 2 ( a n ′ − b n ′ ) ( p n − 1 q n − 2 − p n − 2 q n − 1 ) = 0 p n − 1 q n − 2 − p n − 2 q n − 1 = ( − 1 ) n ≠ 0 ⇒ a n ′ = b n ′ ⇒ a n = b n \begin{gathered}
\textbf{i)} \quad n = m \\ \ \\
\text{根据 }\text{theorem3}, a_0 = [x] = b_0, \text{那么 }\\ \ \\
x=\left[a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}^{\prime}\right]=\left[a_{0}, a_{1}, \ldots, a_{n-1}, b_{n}^{\prime}\right] \\ \ \\
\text{if} \ n = 1, a_{0}+\frac{1}{a_{1}^{\prime}}=a_{0}+\frac{1}{b_{1}^{\prime}} \Rightarrow a_{1}^{\prime}=b_{1}^{\prime} \Rightarrow a_{1}=b_1 \\ \ \\
\frac{a_{n}^{\prime} p_{n-1}+p_{n-2}}{a_{n}^{\prime} q_{n-1}+q_{n-2}}=\frac{b_{n}^{\prime} p_{n-1}+p_{n-2}}{b_{n}^{\prime} q_{n-1}+q_{n-2}} \\ \ \\
\left(a_{n}^{\prime}-b_{n}^{\prime}\right)\left(p_{n-1} q_{n-2}-p_{n-2} q_{n-1}\right)=0 \\ \ \\
p_{n-1} q_{n-2}-p_{n-2} q_{n-1}=(-1)^{n} \neq 0 \Rightarrow a_{n}^{\prime}=b_{n}^{\prime} \\ \ \\
\Rightarrow a_{n}=b_{n}
\end{gathered}
i) n = m 根据 theorem3 , a 0 = [ x ] = b 0 , 那么 x = [ a 0 , a 1 , … , a n − 1 , a n ′ ] = [ a 0 , a 1 , … , a n − 1 , b n ′ ] if n = 1 , a 0 + a 1 ′ 1 = a 0 + b 1 ′ 1 ⇒ a 1 ′ = b 1 ′ ⇒ a 1 = b 1 a n ′ q n − 1 + q n − 2 a n ′ p n − 1 + p n − 2 = b n ′ q n − 1 + q n − 2 b n ′ p n − 1 + p n − 2 ( a n ′ − b n ′ ) ( p n − 1 q n − 2 − p n − 2 q n − 1 ) = 0 p n − 1 q n − 2 − p n − 2 q n − 1 = ( − 1 ) n = 0 ⇒ a n ′ = b n ′ ⇒ a n = b n
ii) N ⩽ M , ∀ n ⩽ N a n = b n M > N , p N q N = x = [ a 0 , a 1 , … , a N ] = [ a 0 , a 1 , … , a N , b N + 1 , … , b M ] = b N + 1 ′ p N + p N − 1 b N + 1 ′ q N + q N − 1 ⇒ p N q N − 1 − p N − 1 q N = 0 这是不可能的 证明过程中, 我们假定了 n ⩽ N 的部分, 所以 b n ′ = [ b N + 1 , … , b M ] \begin{gathered}
\textbf{ii)} \quad N \leqslant M, \forall n \leqslant N \\
a_n = b_n \\ \ \\
M > N, \frac{p_{N}}{q_N}=x=\left[a_{0}, a_{1}, \ldots , a_{N}\right]=\left[a_{0}, a_{1}, \ldots, a_{N}, b_{N+1}, \ldots, b_{M}\right] \\ \ \\
=\frac{b_{N+1}^{\prime} p_{N}+p_{N-1}}{b_{N+1}^{\prime} q_{N}+ q_{N-1}} \Rightarrow p_{N}q_{ N-1}-p_{N-1} q_{N}=0 \\ \ \\
\text{这是不可能的 }\\ \ \\
\text{证明过程中, 我们假定了} n \leqslant N \text{的部分, 所以} \\ \ \\
b_{n}^{\prime}=\left[b_{N+1}, \ldots, b_{M}\right]
\end{gathered}
ii) N ⩽ M , ∀ n ⩽ N a n = b n M > N , q N p N = x = [ a 0 , a 1 , … , a N ] = [ a 0 , a 1 , … , a N , b N + 1 , … , b M ] = b N + 1 ′ q N + q N − 1 b N + 1 ′ p N + p N − 1 ⇒ p N q N − 1 − p N − 1 q N = 0 这是不可能的 证明过程中 , 我们假定了 n ⩽ N 的部分 , 所以 b n ′ = [ b N + 1 , … , b M ]
Euclid算法
a 0 = [ x ] , x = a 0 + ξ 0 ( 0 ⩽ ξ 0 < 1 ) a_{0}=[x], \quad x=a_{0}+\xi_{0} \quad\left(0 \leqslant \xi_{0}<1\right)
a 0 = [ x ] , x = a 0 + ξ 0 ( 0 ⩽ ξ 0 < 1 )
1 ξ 0 = a 1 ′ , [ a 1 ′ ] = a 1 , a 1 ′ = a 1 + ξ 1 ( 0 ⩽ ξ 1 < 1 ) 1 ξ 1 = a 2 ′ = a 2 + ξ 2 ( 0 ⩽ ξ 2 < 1 ) \begin{gathered}
\frac{1}{\xi_{0}}=a_{1}^{\prime}, \quad\left[a_{1}^{\prime}\right]=a_{1}, \quad a_{1}^{\prime}=a_{1}+\xi_{1} \quad\left(0 \leqslant \xi_{1}<1\right) \\ \ \\
\frac{1}{\xi_{1}}=a_{2}^{\prime}=a_{2}+\xi_{2} \quad\left(0 \leqslant \xi_{2}<1\right)
\end{gathered}
ξ 0 1 = a 1 ′ , [ a 1 ′ ] = a 1 , a 1 ′ = a 1 + ξ 1 ( 0 ⩽ ξ 1 < 1 ) ξ 1 1 = a 2 ′ = a 2 + ξ 2 ( 0 ⩽ ξ 2 < 1 )
a 1 > 0 , a 2 > 0 , ⋯ a 1 > 0 , a 2 > 0 , … x = a 0 + ξ 0 ( 0 ⩽ ξ 0 < 1 ) 1 ξ 0 = a 1 ′ = a 1 + ξ 1 ( 0 ⩽ ξ 1 < 1 ) 1 ξ 1 = a 2 ′ = a 2 + ξ 2 ( 0 ⩽ ξ 2 < 1 ) \begin{gathered}
a_{1}>0, \quad a_{2}>0, \quad \cdots \\ \ \\
\begin{gathered}
&a_{1}>0, \quad a_{2}>0, \ldots\\
&x=a_{0}+\xi_{0} \quad\left(0 \leqslant \xi_{0}<1\right)\\
&\frac{1}{\xi_{0}}=a_{1}^{\prime}=a_{1}+\xi_{1} \quad\left(0 \leqslant \xi_{1}<1\right)\\
&\frac{1}{\xi_{1}}=a_{2}^{\prime}=a_{2}+\xi_{2} \quad\left(0 \leqslant \xi_{2}<1\right)
\end{gathered}
\end{gathered}
a 1 > 0 , a 2 > 0 , ⋯ a 1 > 0 , a 2 > 0 , … x = a 0 + ξ 0 ( 0 ⩽ ξ 0 < 1 ) ξ 0 1 = a 1 ′ = a 1 + ξ 1 ( 0 ⩽ ξ 1 < 1 ) ξ 1 1 = a 2 ′ = a 2 + ξ 2 ( 0 ⩽ ξ 2 < 1 )
有理数可以用连分数表示
x = h k , h , k ∈ Z , k > 1 x=\frac{h}{k}, \quad h, k \in \mathbb{Z}, \quad k>1
x = k h , h , k ∈ Z , k > 1
h k = a 0 + ξ 0 ⇒ h = a 0 k + ξ 0 k let ξ 0 k = k 1 ⇒ 1 ξ 0 = a 1 ′ = k k 1 = a 1 + ξ 1 ⇒ k = a 1 k 1 + ξ 1 k 1 let k 2 = ξ 1 k 1 ⇒ ⋯ \begin{gathered}
\frac{h}{k}=a_{0}+\xi_{0} \Rightarrow h=a_{0} k+\xi_{0} k \\ \ \\
\text{let} \quad \xi_{0} k=k_1 \Rightarrow \\ \ \\
\frac{1}{\xi_{0}}=a_{1}^{\prime}=\frac{k}{k_{1}}=a_{1}+\xi_{1} \Rightarrow k=a_{1} k_{1}+\xi_{1} k_{1} \\ \ \\
\text{let} \quad k_{2}=\xi_{1} k_{1} \Rightarrow \cdots
\end{gathered}
k h = a 0 + ξ 0 ⇒ h = a 0 k + ξ 0 k let ξ 0 k = k 1 ⇒ ξ 0 1 = a 1 ′ = k 1 k = a 1 + ξ 1 ⇒ k = a 1 k 1 + ξ 1 k 1 let k 2 = ξ 1 k 1 ⇒ ⋯
h = a 0 k + k 1 ( 0 < k 1 < k ) k = a 1 k 1 + k 2 ( 0 < k 2 < k 1 ) k 1 = … k N − 2 = a N − 1 k N − 1 + k N ( 0 < k N < k N − 1 ) k N − 1 = a N k N \begin{aligned}
&h=a_{0} k+k_{1} \quad\left(0<k_{1}<k\right)\\
&k=a_{1} k_{1}+k_{2} \quad\left(0<k_{2}<k_{1}\right)\\
&k_{1}=\dots\\
&k_{N-2}=a_{N-1} k_{N-1}+k_{N} \quad\left(0<k_{N}<k_{N-1}\right)\\
&k_{N-1}=a_{N} k_{N}
\end{aligned}
h = a 0 k + k 1 ( 0 < k 1 < k ) k = a 1 k 1 + k 2 ( 0 < k 2 < k 1 ) k 1 = … k N − 2 = a N − 1 k N − 1 + k N ( 0 < k N < k N − 1 ) k N − 1 = a N k N
0 < 1 a N = 1 a N ′ = k N k N − 1 = ξ n − 1 < 1 0<\frac{1}{a_{N}}=\frac{1}{a_{N}^{\prime}}=\frac{k_{N}}{k_{N-1}}=\xi_{n-1}<1
0 < a N 1 = a N ′ 1 = k N − 1 k N = ξ n − 1 < 1