1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
| // // main.c // GetLocalMAC-IP // // Created by zhangmin chen on 2018/10/8. // Copyright © 2018年 zhangmin chen. All rights reserved. //
//------------now we try to Get MAC Address------
static kern_return_t FindEthernetInterfaces(io_iterator_t *matchingServices); static kern_return_t GetMACAddress(io_iterator_t intfIterator, UInt8 *MACAddress, UInt8 bufferSize);
// Returns an iterator containing the primary (built-in) Ethernet interface. The caller is responsible for // releasing the iterator after the caller is done with it. static kern_return_t FindEthernetInterfaces(io_iterator_t *matchingServices) { kern_return_t kernResult; CFMutableDictionaryRef matchingDict; CFMutableDictionaryRef propertyMatchDict; // Ethernet interfaces are instances of class kIOEthernetInterfaceClass. // IOServiceMatching is a convenience function to create a dictionary with the key kIOProviderClassKey and // the specified value. matchingDict = IOServiceMatching(kIOEthernetInterfaceClass); // Note that another option here would be: // matchingDict = IOBSDMatching("en0"); // but en0: isn't necessarily the primary interface, especially on systems with multiple Ethernet ports. if (NULL == matchingDict) { printf("IOServiceMatching returned a NULL dictionary.\n"); } else { // Each IONetworkInterface object has a Boolean property with the key kIOPrimaryInterface. Only the // primary (built-in) interface has this property set to TRUE. // IOServiceGetMatchingServices uses the default matching criteria defined by IOService. This considers // only the following properties plus any family-specific matching in this order of precedence // (see IOService::passiveMatch): // // kIOProviderClassKey (IOServiceMatching) // kIONameMatchKey (IOServiceNameMatching) // kIOPropertyMatchKey // kIOPathMatchKey // kIOMatchedServiceCountKey // family-specific matching // kIOBSDNameKey (IOBSDNameMatching) // kIOLocationMatchKey // The IONetworkingFamily does not define any family-specific matching. This means that in // order to have IOServiceGetMatchingServices consider the kIOPrimaryInterface property, we must // add that property to a separate dictionary and then add that to our matching dictionary // specifying kIOPropertyMatchKey. propertyMatchDict = CFDictionaryCreateMutable(kCFAllocatorDefault, 0, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks); if (NULL == propertyMatchDict) { printf("CFDictionaryCreateMutable returned a NULL dictionary.\n"); } else { // Set the value in the dictionary of the property with the given key, or add the key // to the dictionary if it doesn't exist. This call retains the value object passed in. CFDictionarySetValue(propertyMatchDict, CFSTR(kIOPrimaryInterface), kCFBooleanTrue); // Now add the dictionary containing the matching value for kIOPrimaryInterface to our main // matching dictionary. This call will retain propertyMatchDict, so we can release our reference // on propertyMatchDict after adding it to matchingDict. CFDictionarySetValue(matchingDict, CFSTR(kIOPropertyMatchKey), propertyMatchDict); CFRelease(propertyMatchDict); } } // IOServiceGetMatchingServices retains the returned iterator, so release the iterator when we're done with it. // IOServiceGetMatchingServices also consumes a reference on the matching dictionary so we don't need to release // the dictionary explicitly. kernResult = IOServiceGetMatchingServices(kIOMasterPortDefault, matchingDict, matchingServices); if (KERN_SUCCESS != kernResult) { printf("IOServiceGetMatchingServices returned 0x%08x\n", kernResult); } return kernResult; }
// Given an iterator across a set of Ethernet interfaces, return the MAC address of the last one. // If no interfaces are found the MAC address is set to an empty string. // In this sample the iterator should contain just the primary interface. static kern_return_t GetMACAddress(io_iterator_t intfIterator, UInt8 *MACAddress, UInt8 bufferSize) { io_object_t intfService; io_object_t controllerService; kern_return_t kernResult = KERN_FAILURE; // Make sure the caller provided enough buffer space. Protect against buffer overflow problems. if (bufferSize < kIOEthernetAddressSize) { return kernResult; } // Initialize the returned address bzero(MACAddress, bufferSize); // IOIteratorNext retains the returned object, so release it when we're done with it. while ((intfService = IOIteratorNext(intfIterator))) { CFTypeRef MACAddressAsCFData; // IONetworkControllers can't be found directly by the IOServiceGetMatchingServices call, // since they are hardware nubs and do not participate in driver matching. In other words, // registerService() is never called on them. So we've found the IONetworkInterface and will // get its parent controller by asking for it specifically. // IORegistryEntryGetParentEntry retains the returned object, so release it when we're done with it. kernResult = IORegistryEntryGetParentEntry(intfService, kIOServicePlane, &controllerService); if (KERN_SUCCESS != kernResult) { printf("IORegistryEntryGetParentEntry returned 0x%08x\n", kernResult); } else { // Retrieve the MAC address property from the I/O Registry in the form of a CFData MACAddressAsCFData = IORegistryEntryCreateCFProperty(controllerService, CFSTR(kIOMACAddress), kCFAllocatorDefault, 0); if (MACAddressAsCFData) { CFShow(MACAddressAsCFData); // for display purposes only; output goes to stderr // Get the raw bytes of the MAC address from the CFData CFDataGetBytes(MACAddressAsCFData, CFRangeMake(0, kIOEthernetAddressSize), MACAddress); CFRelease(MACAddressAsCFData); } // Done with the parent Ethernet controller object so we release it. (void) IOObjectRelease(controllerService); } // Done with the Ethernet interface object so we release it. (void) IOObjectRelease(intfService); } return kernResult; }
//print Hex data void pHx(unsigned char* p, int len) { printf("Hex: "); for(int i = 0; i < len; i++) { printf("%02X:", p[i]); } printf("\b\n"); }
// get local mac // For Linux
/* * for linux * * char* getMac(char* mac, char* dv) { struct ifreq ifr; int sock; if(!mac || dv) return mac; if( (sock = socket(AF_INET, SOCK_STREAM, 0)) < 0 ) { perror("socket "); return mac; } strcpy(ifr.ifr_name, dv); if(ioctl(sock, SIOCGIFHWADDR, &ifr) < 0) { //SIOCGIFHWADDR perror("ioctl "); return mac; } pHx( (unsigned char*)ifr.ifr_ifru.ifru_addr.sa_data, sizeof(ifr.ifr_ifru.ifru_addr.sa_data) ); //eth length of MAC is 48bits sprintf(mac, "%02X:%02X:%02X:%02X:%02X:%02X", (unsigned char)ifr.ifr_ifru.ifru_addr.sa_data[0], (unsigned char)ifr.ifr_ifru.ifru_addr.sa_data[1], (unsigned char)ifr.ifr_ifru.ifru_addr.sa_data[2], (unsigned char)ifr.ifr_ifru.ifru_addr.sa_data[3], (unsigned char)ifr.ifr_ifru.ifru_addr.sa_data[4], (unsigned char)ifr.ifr_ifru.ifru_addr.sa_data[5]); return mac; } */
int main(int argc, const char* argv[]) { char hostname[128]; struct hostent* hostent1; // int i; gethostname(hostname, sizeof(hostname)); hostent1 = gethostbyname(hostname); printf("Hostname: %s\n", hostent1->h_name); printf("\n"); // char mac[30]; struct ifaddrs* ifap0 = NULL, *ifap = NULL; void* addPtr = NULL; getifaddrs(&ifap0); ifap = ifap0; while(ifap != NULL) { if(ifap->ifa_addr->sa_family == AF_INET) { // is a valid IPv4 address addPtr = & ((struct sockaddr_in *)ifap->ifa_addr)->sin_addr; char addressBuffer[INET_ADDRSTRLEN]; inet_ntop(AF_INET, addPtr, addressBuffer, INET_ADDRSTRLEN); if(strcmp(addressBuffer, "127.0.0.1") != 0) { printf("%s IPv4: %s\n", ifap->ifa_name, addressBuffer); } } else if(ifap->ifa_addr->sa_family == AF_INET6) { // is a valid IPv6 address addPtr = & ((struct sockaddr_in *)ifap->ifa_addr)->sin_addr; char addressBuffer[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, addPtr, addressBuffer, INET6_ADDRSTRLEN); if(strcmp(addressBuffer, "::") != 0) { printf("%s IPv6: %s\n", ifap->ifa_name, addressBuffer); } } ifap = ifap->ifa_next; } if(ifap0) { freeifaddrs(ifap0); ifap0 = NULL; } printf("\n\n"); printf("--------Now we try to get MAC address----------------\n"); printf("\n"); kern_return_t kernResult = KERN_SUCCESS; io_iterator_t intfIterator; UInt8 MACAddress[kIOEthernetAddressSize]; kernResult = FindEthernetInterfaces(&intfIterator); if(KERN_SUCCESS != kernResult) { printf("FindEthernetInterfaces returned 0x%08x\n", kernResult); } else { kernResult = GetMACAddress(intfIterator, MACAddress, sizeof(MACAddress)); if(KERN_SUCCESS != kernResult) { printf("GetMACAddress return 0x%08x\n", kernResult); } else { printf("This system's built-in MAC address is %02x:%02x:%02x:%02x:%02x:%02x.\n", MACAddress[0], MACAddress[1], MACAddress[2], MACAddress[3], MACAddress[4], MACAddress[5]); } } (void) IOObjectRelease(intfIterator); return kernResult; }
|